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Abstract

Condition variables complement locks by allowing a pro-
gram to specify the order of execution. They have been in
use, largely unchanged, for three decades and have proved
to be a robust and scalable synchronization mechanism.
However, most transactional memory (TM) systems provide
no complementary mechanism. While new synchronization
constructs have been proposed for TM, it seems prudent to
support condition variables with transactional memory at
least until other proposals prove themselves to be as robust
and enduring.

We present an examination of condition variables and
transactional memory. We show that straightforward conver-
sion of lock-based condition variable mechanisms to trans-
actions may be incorrect for some TM systems. We present
two condition variable designs for transactional memory that
require little from the underlying TM system yet can express
common usages of conditional waiting. Both versions im-
pose minimal requirements on the TM system and neither
requires knowledge of how TM is implemented or modifica-
tions to the TM system.

To adapt condition variables to transactions, we split the
wait operation into two operations, preparing to wait trans-
actionally and completing the wait after commit. In the first
design, we defer signaling until after commit to prevent races
between signalers and the waiters they wake up. In the sec-
ond, we signal speculatively before the transaction commits
and depend on transactional conflict detection to prevent
races. We show that both perform well on lock-based pro-
grams from the PARSEC suite converted to transactions.

1. Introduction

Transactional memory (TM) seeks to simplify concurrent
programming by removing the need for explicit locking.
While TM provides mutual exclusion, other concurrent pro-
gramming tasks, such as ordering of events, have not been
as well supported. For example, transactions alone do not
provide a mechanism for producer and consumer threads to
signal to each other when work or buffer space is available.
Recent analysis of concurrency bugs shows that event order-
ing is a significant source of concurrency bugs [[14].

While many new transactional synchronization mecha-
nisms have been proposed [4} 5} 10, [11} [16} 24], they have

not yet been widely used. It seems prudent to support condi-
tion variables with transactional memory at least until other
proposals prove themselves to be as robust. Since stabilizing
on semantics from Mesa [[13]], condition variables have been
used without change for nearly three decades. Despite pro-
grammability problems, such as failing to signal a waiting
thread, condition variables have proved useful [9] and have
efficient implementations.

Transactional memory changes the semantics of both
waiting and signaling. For example, most condition variable
implementations warn against “naked notifies”, or signaling
without holding the condition mutex lock [13]. However,
signaling within a transaction raises the possibility that the
signaling transaction may abort, so the condition it signaled
never occurs. Furthermore, we observe that under some con-
flict resolution policies a recently woken transaction may
cause a signaling thread to abort.

In this paper, we investigate how to use condition vari-
ables with transactions. We identify substantial changes in
the use/implementation of condition variables.

Waiting. We observe that a regular condition variable
drops a lock and waits on a queue to be signaled. This must
be atomic, so that an intervening signaler cannot acquire
the lock, change the condition, and signal, before the waiter
waits on the queue. With transactions, this may not be possi-
ble. Waiting on a queue is a kernel operation in some operat-
ing systems, such as Linux and Windows, and most current
transactional memory systems apply only to user-level code.

We propose splitting the wait operation into two oper-
ations: prepare wait and complete wait. The prepare wait
statement, executed within a transaction, ensures that the fol-
lowing complete wait outside the transaction will not miss
any concurrent signals. While splitting the wait function was
previously done in AtomCaml [21], we provide an imple-
mentation suitable for C-like languages that builds only on
common OS primitives for waiting.

Signal/broadcast. We observe that a signaling or broad-
casting transaction may execute concurrently with a trans-
action that it woke up. This can lead to lost wake-ups if the
waking transaction completes before the signaling transac-
tion. The waking transaction may view shared state from be-
fore the signaling transaction, and hence before the logical
condition it awaits is visibly changed.



We present two solutions to this problem with differ-
ent requirements on the underlying TM system. The first,
deferred-signal, delays signaling until after the transaction
commits. This raises the cost of signal/broadcast compared
to signaling from within the transaction and requires support
for deferring actions until the transaction commits. The sec-
ond solution, speculative-signal executes a signal/broadcast
from within the transaction. This design requires the abil-
ity to escape from the transaction temporarily to call into
the kernel. Speculative signals rely on transactional conflict
detection to guarantee that if the signaling transaction does
not abort then any thread it wakes up will observe its state
changes. Unlike most implementations of condition vari-
ables, both designs can be implemented without knowledge
of or changes to the transactional memory implementation.

We present performance results from simulation with the
LogTM-SE TM system [28] showing that our implementa-
tion performs well. We demonstrate its utility by convert-
ing one program from the libMicro test suite [25] and two
programs from the PARSEC benchmark suite to use trans-
actions [[1]]. These tests demonstrate that transactional con-
dition variables can perform as well as or better than lock-
based condition variables.

In the next section, we describe the semantics of condi-
tion variables. Following that in Section [3| we discuss alter-
native conditional synchronization mechanisms. In Sectionf4]
we discuss the design considerations for a TM implementa-
tion of condition variables. We present our two approaches
in Sections [} and [6l We follow that with an evaluation and
then conclude.

2. Condition variables

Condition variables are commonly accessed through the
Pthreads API in C and C++ [19] or through language-based
mechanisms, such as Java’s wait/notify methods [8]. As the
two implementations are similar, we describe the Pthreads
interface and semantics.

A condition variable is a queue of waiting threads and
supports three operations: wait, signal and broadcast. Log-
ically, every condition variable is associated with one (or
more) Boolean condition expressions and a mutex lock. The
lock protects a monitor invariant, a property of shared state
that must be true when the lock is not held. A thread ac-
quires the lock and tests the condition expression. If it is not
true, the thread waits for the condition expression to become
true by calling wait on the condition variable and lock. This
atomically: (1) enqueues the thread on the condition vari-
able, (2) releases the lock, and (3) suspends the thread. Thus,
the thread must ensure that monitor invariant holds before
waiting.

A thread, while holding the lock, may change the vari-
ables constituting the condition expression. It should then
call signal to notify a single waiting thread to resume exe-
cution or broadcast to wake all waiting threads. Signal and

broadcast move waiting threads off the condition variable’s
queue and queue them on the associated lock. Only after
the signaling/broadcasting thread releases the lock may these
threads resume execution. However, it is possible that other
threads were previously waiting on the lock, so the waiting
threads are not guaranteed that the condition expression is
true. Rather, returning from wait is considered a hint that ex-
pression may have become true. After resuming, the thread
must test the expression again before proceeding. Hence,
threads commonly wait within a while loop that tests the
condition expression. Figure[I|shows an example of waiting.
These semantics for condition variables were first imple-
mented in the Mesa language [[13] and have remained largely
unchanged since then. They provide several benefits:

1. Constant-time operation. Signaling and waiting are both
independent of the number of waiters, as they only ma-
nipulate the head or tail of the queue.

2. Flexibility. When multiple condition variables are associ-
ated with a single lock (possible in Pthreads but not Java),
a signaler can wake specific waiters.

3. Speed. As waiters are specifically signaled, it is likely that
when they resume the condition will be true.

As evidence of the durability of condition variables, Mi-
crosoft recently added support for condition variables to
Windows Vista [22] after the difficulty of implementing con-
dition variables on existing primitives was shown [2]].

Despite their popularity, condition variables have two
limitations. First, the signal operation is explicit, so a pro-
grammer may forget to call signal when changing shared
state. Second, condition variables do not nest within mul-
tiple levels of mutex locks [13]] because only the inner-most
lock is released when waiting. As a result, deadlock may re-
sult if the blocked thread can only be woken by code that
acquires a lock still held by the waiting thread.

3. Alternative Synchronization Mechanisms

The incumbent conditional synchronization mechanism for
transactional memory is the retry/orelse construct [11].
When a transaction invokes retry, it aborts to the outer-
most level (if there was nesting) and waits until any ad-
dress it read is written by another transaction. Compared
to condition variables, retry eliminates the need for sig-
naling, because transactions are restarted automatically if
anything changed. The orelse statement allows a transac-
tion to try multiple sub-transactions, each of which retry;
only if all sub-transactions invoke retry does the parent
transaction abort and wait. Thus, orelse acts like a socket
select call by allowing a function to wait for one of many
sub-transactions to become ready to execute. This enables
composition of multiple transactions that wait, which is not
possible with condition variables. A more limited version of
retry in which the programmer specifies memory locations



void BeginWrite() {

pthread_mutex_lock(mutex);

while (NWriters == || NReaders > 0) {
++WaitingWriters;
pthread_cond_wait(CanWrite,mutex) ;
--WaitingWriters;

}

NWriters = 1;

pthread_mutex_unlock(mutex) ;

}

Figure 1. Condition variable code that depends on waking
the correct thread. The WaitingWriters counter causes read-
ers to wait until a writer proceeds.

to watch has been designed for a proposed hardware TM
system [4}16].

However, we observe that retry may not be applicable
to all synchronization problems. First, all waiting threads
must execute when something they read changes. This effec-
tively turns all signal operations into broadcasts, because the
programmer cannot express a preference between threads.
Second, retry may incur additional performance costs as
more threads wait, as there are more threads to check for
conflicts. In contrast, condition variables have constant-time
execution. Thus, condition variables are still an important
synchronization construct that should be supported.

Other transactional memory systems have implemented
conditional critical regions [12] by specifying a predicate
that must be true to execute the subsequent transaction. The
thread executes the predicate and, if it is not true, waits until
another transaction modifies the memory locations accessed
by the predicate [S}[10} 24)]. Similar to retry, this construct
avoids the need for an explicit signal operation at the cost of
turning every signal into a broadcast.

Given the interest in automatic synchronization, in which
threads are woken without specific instructions from the pro-
gram, it is perhaps instructive to re-read the discussions that
lead to the creation of monitors and condition variables.
Hoare, a co-creator of monitors, wrote about using condi-
tional critical regions within operating systems:

I feel this proposal [conditional critical regions] is
not suitable for operating system implementation. My
proposed method encourages the programmer to ig-
nore the question of which of several outstanding re-
quests for a resource should be granted [9].

Figure |1} part of a condition variable implementation of
a readers/writers lock illustrates this problem. The code uses
the WaitingWriters counter to block readers until a writer
proceeds. With conditional critical regions, waiting occurs
without any changes to shared state.

Brinch Hansen, the other co-creator of monitors, identi-
fied three additional weaknesses of conditional critical re-
gions [9]:

1. “The resource concept is unreliable.” Similar to current
debates about strong and weak atomicity, this statement
notes that all changes to a variable, whether inside or
outside a critical section, must be considered.

2. “The context switching is inefficient.” This statement
notes that re-evaluating expressions by re-executing them
in the waiting thread leads to excessive context switch-
ing.

3. “The scheduling mechanism is too restrictive.” This state-
ment notes that waiting without side effects (such as
aborting before waiting) prevents a thread from indicat-
ing the urgency of its request, for example to prioritize
some waiters over others. A reader-writer lock, for ex-
ample, may want to block new readers while a writer is
waiting.

Thus, we believe that condition variables will remain a
valuable synchronization tool and should be supported by
transactional memory systems.

4. Integrating Condition Variables with
Transactional Memory

We seek an implementation of condition variables for trans-
actional memory that keeps the same semantics as existing
condition variables. Therefore, a transaction must commit
before waiting on a condition variable. As a result, nesting
condition variables within multiple transactions is not possi-
ble.

We have found three important issues that must be re-
solved to implement condition variables for transactional
memory.

Implementation Independence. Most condition variable
implementations are tightly coupled to the implementation
of locks, to allow the wait operation to atomically enqueue a
thread, drop the lock, and wait in the kernel [2]. However,
transactional memory has many implementations, in soft-
ware, hardware, or a mix. Furthermore, TM systems vary
widely in how they resolve conflicts, how they manage con-
current access to data by transactions and non-transactional
code, and what features they provide.

We seek a design that is compatible with the Pthreads
API, applicable across a broad range of TM systems, and
requires no modifications to the TM system or knowledge of
its implementation.

Waiting. Waiting on a traditional condition variable atom-
ically enqueues the thread on a queue, drops the lock, and
waits in the kernel. This ensures that concurrent signal oper-
ations do not arrive between testing the condition expression
and waiting in the kernel. However, the queue is shared state
and may touch per-thread structures, such as control blocks
that are also accessed by non-transactional threads. There-
fore, enqueuing a thread in a transaction may cause unnec-
essary conflicts.



As a result, an alternate mechanism besides a queue is
needed to prevent lost wake-ups. Furthermore, TM condition
variables must split waiting into a prepare operation, which
takes place transactionally and ensures that subsequent sig-
nals are not lost, and a complete operation after committing
the transaction to enqueue the thread and wait in the kernel.

Signaling. We observe that with mutex locks and condi-
tion variables, the order of updating the condition and signal-
ing is irrelevant; as long as the condition expression has been
updated before the lock is released, waiting threads will cor-
rectly observe the condition to be changed. In a TM system,
a waking thread could overlap execution with the signaling
thread and test the condition before it is modified, causing
either a conflict between the threads or a lost wake up.

Thus, the signal implementation must ensure that waking
threads observe the change to the condition expression by a
signaling thread.

The signal operation is commonly executed with the lock
held to prevent so-called naked notifies [13]. With lock-
based condition variables, signaling without holding the lock
is discouraged for two reasons. First, a naked notify is of-
ten accompanied by changing the state variables represent-
ing the condition without a lock. When these variables are
changed without a lock, wake-ups can be lost because a con-
current waiter may read the state variable, followed by the
signaler changing the state variable and signaling, followed
by the waiter waiting. Second, in some implementations (in-
cluding Solaris) the signaler may only move a waiter from
the condition variable queue to the mutex queue if it holds
the mutex. Otherwise, the waiter must resume execution and
attempt to acquire the mutex, causing unnecessary context
switches.

With transactions, though, both issues disappear as long
as state variables updates occur within the transaction. There
is no lock queue, so there is no need to move the waiter to a
separate queue when signaling.

Prior work on condition variables for transactional mem-
ory implemented Mesa-style condition variables for transac-
tions and observe that the wait operation must be split into
two operations to allow the transaction to commit [21]] and
that the signal operation can be deferred until commit [27].
However, these implementations are each for a specific soft-
ware TM system and have not been abstracted to work across
multiple TM systems with different conflict detection and
resolution policies.

In the next two sections we present two designs for TM
condition variables with different requirements of the under-
lying TM platform.

5. Deferred-Signal Condition Variables

Our first design for condition variables works across a wide
variety of TM implementations. It places only one demand
on the TM system: the ability to specify additional code
to execute at commit. This allows the implementation of

struct tx_cv {
queue_t waiter_queue;
spinlock_t queue_lock;
int counter;

}

void tx_cv_prepare_wait(tx_cv cv) {
this_thread.cv_counter = cv.counter;

}

int tx_cv_complete_wait(tx_cv cv) {
int result = 0;

/* add self to queue */

set_waiting_flag(this_thread);
spin_lock(cv.queue_lock);
enqueue (cv.queue,this_thread) ;
spin_unlock(cv.queue_lock);

/* wait in kernel if no intervening signal */

if (this_thread.cv_counter == cv.counter) {
result = kernel_wait();

}
/* clean up from waiting */

spin_lock(cv.queue_lock);
dequeue (cv.queue,this_thread) ;
spin_unlock(cv.queue_lock) ;
unset_waiting_flag(this_thread);
return(result);

}

Figure 2. Code for waiting on condition variables in trans-
actions with deferred signaling

signal() to defer delivery of the signal until the transaction
commits.

As illustrated at the top of Figure[2] a transactional condi-
tion variable is a queue and a counter; the queue contains the
list of waiters, and the counter prevents races between wait-
ing and signaling transactions. As with traditional condition
variables, transactions should wait within a while loop, as
they may wake up spuriously.

5.1 Waiting

As previously mentioned, waiting is split into two opera-
tions: preparing to wait and completing the wait. The tx_-
cv_prepare_wait function, in the middle of Figure[2]is called
from transactions when they decide to wait. This function
reads a counter; the thread learns of a concurrent signal if the
counter value changes before it waits. Note that it modifies



no shared state, so multiple threads can concurrently pre-
pare to wait. A thread calls the tx_cv_complete_wait func-
tion, shown at the bottom of Figure[2] to actually wait after
committing a transaction.

We present the wait function as enqueuing, testing to
make sure the counter has not changed, and waiting. This
implementation is based on Solaris, where these are the
primitive operations used to implement locks and condition
variables as well. The kernel wait returns immediately if
the waiting flag set by set_waiting flag has been cleared
by a concurrent signaler. For Linux, which provides the
futex abstraction [7], the futex system call performs these
three operations at once. This call will return immediately
if the value passed (the counter parameter) does not equal
the value in memory (the counter in the condition variable).
If the counter has not changed, the thread adds itself to a
queue and waits. Thus, a concurrent signal will be detected
to ensure that the wake-up is not lost.

For simplicity we do not show the code to handle signals
or timed waits. In both cases, the waiter must check whether
it returned from the kernel because of a condition variable
signal or another reason.

In a TM system that provides an explicit transaction
commit statement, both prepare- and complete-wait may
be wrapped in a single function. For languages with atomic
blocks, which are lexically scoped, the code must be reorga-
nized to call complete-wait outside an atomic block. Figure[3]
shows the code from Figure |I| reorganized in this way. We
have developed macros to do this automatically for trans-
actions where wait is lexically scoped within the atomic
block.

5.2 Signal/Broadcast

As shown in Figure ] the signal function increments the
counter then wakes the first waiter on the queue (if there
is one). Incrementing the counter before checking the queue
ensures that a concurrent waiter will detect the change. A
concurrent waiting transaction will detect the counter change
after enqueuing, so a signal may inadvertently wake two
threads - one explicitly pulled from the queue, and another
one that was executing when signal was called. This design
implements the same Mesa semantics as Pthreads, though,
so this is a performance and not a correctness issue. The
broadcast function (not shown) is similar except that it re-
moves all threads from the queue and wakes them in the ker-
nel.

This implementation depends on the ability to defer oper-
ations until the transaction commits, shown in Figure[d]using
the register_commit_action function. A TM system pro-
viding commit actions records a list of functions and param-
eters and executes them in order after the transaction com-
mits and releases isolation [16, (17, [18]. Not all TM systems,
though, provide this feature.

For simple uses of signal, as shown in Figures [3} it suf-
fices to simply relocate the signal to execute after com-

void BeginWrite()
{
int DoWait = 0 ;
do {
atomic {
if (DoWait) {
--WaitingWriters;
DoWait = 0;
}
if (NWriters == || NReaders > 0) {
++WaitingWriters;
tm_cv_prepare_wait (CanWrite)
DoWait = 1;
} else {
NWriters = 1;
}
} // end atomic
if (DoWait)
tx_cv_complete_wait(CanWrite);
} while (DoWait);
}

Figure 3. Code from Figure [I] converted to use atomic
blocks and transactional condition variables. The DoWait
variable records whether a wait is necessary. The code fol-
lowing the wait in the original code is moved to the top of the
transaction and does not execute on the first loop iteration.

int tx_cv_signal(tx_cv cv) {
register_commit_action(tx_cv_signal_ commit,
cv);

}

void tx_cv_signal_commit(tx_cv cv) {
atomic_inc(cv.counter);
spin_lock(cv.queue_lock);
if (not_empty(cv.queue) {
thread = dequeue(cv.queue);
}
spin_unlock(cv.queue);
if (thread) {
unset_waiting_flag(this_thread);
kernel_wake(thread) ;
}
}

Figure 4. Code for deferred signaling of a condition vari-
able from a transaction.



1 char get() { char get() {

2 begin_TX; begin_TX;

3 while (n == 0) while (n == 0)

4 wait (not_empty) ; wait(not_empty);
5 ch = buf[tail % N]; ch = buf([tail % N];
6 tail++; tail++;

7 n--; n--;

8 signal (not_full); end_TX;

9 end_TX; signal (not_full);
10 return ch; return ch;

T }

Figure 5. Code transformed to signal after committing. The
signal in line 8 on the left is moved to line 9 on the right.
This is possible because the code always signals, and never
waits after signaling.

void test (int k) {
if ((state([k + N - 1) % N] != EATING) &&
(state[k] == HUNGRY) &&
(state[(k + 1) % N] != EATING)) {
state[k] = EATING;
signal(self [k].cv);

}

}

void pickup (int i) {
begin_TX;
state[i] = HUNGRY;
test(i);

while (state[i] !'= EATING) {
wait(self[i].cv);
}
end_TX:
}

Figure 6. Sample code for dining philosophers, which is
difficult to transform by deferring signals until the transac-
tion commits because the code signals as part of the test
function, called before waiting. Code adapted from Operat-
ing Systems Concepts [23].

mitting the transaction. However, more complicated uses of
condition variables, such as the code shown in Figure[6 may
conditionally signal multiple condition variables, or wait
rather than commit after signaling. In this case, the call to
signal must execute as part of the wait, when the transac-
tion commits. Thus, a commit action can guarantee that the
signal will execute no matter where the transaction commits.

5.3 Discussion

The deferred-signal condition variable implementation ex-
ecutes correctly on most TM implementations, because the
signal executes after changes to the condition state are com-
mitted to memory and visible to other threads.

Note that the signal/broadcast operation writes a value
that is read transactionally by the tx_cv_prepare wait func-
tion. This may have different results depending on whether
the TM system is strongly or weakly atomic and how it re-
solves conflicts between transactions and non-transactional
code. With strong atomicity and a transaction-wins con-
flict resolution policy, a signaler will block until a wait-
ing transaction commits. With strong atomicity and a non-
transactional-code-wins policy, a signaler will abort a waiter,
which will retry and see a change to the condition expres-
sion. Thus, the wake-up will not be lost.

With weak atomicity, a signaler may change the counter
while a waiting transaction executes. In this case, the waiting
transaction will commit, see the changed counter, and retry.
Thus, the counter again ensures that wake-ups are not lost.

Deferring signal until commit may in some cases de-
crease performance. First, it delays waking threads until af-
ter commit, which limits the concurrency between signaling
and waiting threads. Second, deferred function calls may be
more expensive than in-line calls, because the function and
parameter must be recorded and control flow must be inter-
rupted at commit to execute the deferred function. For ex-
ample, on LogTM-SE [28]], commit actions require an extra
processor trap to invoke the specified function. On other sys-
tems, such as the Intel STM, commit is handled in software
and invoking an extra function is relatively cheap [18]].

6. Speculative-Signal Condition Variables

The preceding section presented an implementation of con-
dition variables that defers signaling until commit. Here we
present a second design of transactional condition variables
that differs by signaling speculatively, before committing the
transaction.

Signaling before committing the transaction introduces
two major differences. First, the signal operation executes
as part of a transaction, so it can use transactional operations
as part of its implementation. However, signal interacts with
the non-transactional wait function and calls into the kernel.
It therefore also uses escape actions internally to temporarily
pause transactional semantics so it can invoke the kernel [17,
29]. The effect of a signal, waking a waiting thread, occurs
immediately rather than when the transaction commits. This
implementation only works for TM systems that implement
escape actions.

Second, when signaling before committing, it is possible
that a waiter will awake and execute before the signaler
commits. Thus, the implementation must ensure that the
waiter will observe a change to the condition expression;
otherwise it will go back to sleep and the wake-up will be
lost.

Unlike the deferred implementation, speculative condi-
tion variables use a flag to indicate whether there are user-
level waiters. This flag, shown at the top of Figure[7] allows



struct tx_cv {
queue_t waiter_queue;
spinlock_t queue_lock;
int counter;
int waiters;

}

void tx_cv_prepare_wait(tx_cv cv) {
this_thread.cv_counter = cv.counter;
cv.waiters = 1;

}

Figure 7. Code for preparing to wait with speculative-signal
condition variables. This implementation adds flag to the
condition variable declaration that is set when preparing to
wait.

signal and wait to use transactional conflict detection to pre-
vent lost wake-ups as we describe below.

6.1 Waiting

The prepare-wait function, shown in Figure [/} differs from
the deferred version by setting a waiters flag to indicate
that there are waiters. Signalers read and set this flag as
well, causing a transactional conflict if they are concurrent.
Thus, a waiting transaction will be correctly ordered either
before a signaling one, ensuring that it receives the signal;
or afterwards, ensuring that it will view any changes made
to the condition expression’s state.

Writing to a shared value as part of prepare-wait de-
creases concurrency compared to the deferred version, as
concurrent waiters will conflict. However, conflicts on the
waiters variable can be resolved by stalling all but one
transaction, which reduces the cost of the conflict. If a TM
system prevents concurrent readers and writers, such as with
eager conflict detection, only the first waiter need update the
flag. Other waiters can read the flag to ensure they conflict
with concurrent signaling threads.

The code for waiting on a condition variable is identical
to the deferred-signal version in Figure[2]

6.2 Signal/Broadcast

A transaction signals a condition variable by incrementing
the counter, testing for waiters, and if necessary waking
up one from the queue. Unlike the deferred-signal version,
signal performs the queue and kernel wake up operations
in an escape action and the increment of the counter and
write to the waiters flag occur within the transaction. The
wake up and queue operations are escaped because they
access state shared with non-transactional code through the
complete-wait operation. In contrast, the counter and flag
manipulation occurs within the transaction to prevent lost
wake-ups that could occur if a signaler woke a waiter, which
then re-read the condition and went back to sleep before the
waiter commits.

int tx_cv_signal(tx_cv cv) {
cv.counter++;
if (cv.waiters) {
int remaining;
begin_ESCAPE;

/* wake up any waiters */

spin_lock(cv.queue_lock);

thread = dequeue(cv.queue, &remaining);

spin_unlock(cv.queue);

if (thread) {
unset_waiting_flag(this_thread);
kernel_wake(thread) ;

}

end_ESCAPE;

cv.waiters = remaining 7 1 : O;

}
}

Figure 8. Code for signaling a speculative-signal condition
variable. The dequeue operation returns a count of the re-
maining elements on the list.

Instead, concurrent waiting and signaling threads are
guaranteed to conflict: they both write to variables read by
the other transaction. Therefore, a concurrent waiter may
abort the signaler, leading to a spurious wake-up. Otherwise,
the signaler will abort the waiter, which will retry and see
the condition has changed. Spurious wake-ups can also oc-
cur when a signaling transaction subsequently aborts.

TM systems that are vulnerable to the friendly fire pathol-
ogy [3] may suffer from livelock if a waiting thread causes
the signaling thread to abort; this cycle may repeat persis-
tently. Thus, this implementation requires the TM system to
implement a conflict resolution policy that prevents a trans-
action waking after being signaled from aborting the signal-
ing transaction.

6.3 Discussion

Table |1{ shows the major elements of the two alternative de-
signs, why they were chosen, and the requirements for the
underlying TM system. The speculative signal implemen-
tation of TM condition variables can improve performance
compared to deferring signal by removing the deferral mech-
anism. In addition, it reduces the latency of wake-ups, as
woken threads can execute before the transaction commits.
However, it cannot be implemented on TM systems that lack
non-transactional escape actions, and the cost of transac-
tional conflicts between waiters and signalers may be greater
than cost of deferring the signal operation. Hence, the choice
between systems comes down to the capabilities of the TM
platform and the performance of its operations.



Design What? Why? TM Requirements
Deferred-Signal ® prepare_wait only e Prevent wait-wait e Commit actions
reads data conflicts

e Defer signal until
after commit

e Prevent signal/wake-up
races

Speculative-Signal | e prepare wait writes
waiters flag

e signal writes
waiters flag

e Execute signal within

transaction

e Prevent signal/wake-up
races

e Low latency
wake-up

e Escape actions
e Robust conflict detection

Table 1. Distinct design elements of deferred-signal and speculative-signal condition variables. Common features include
splitting wait into prepare-wait and complete-wait, and use of a counter to detect signal/wait races.

7. Evaluation

We evaluate both implementations of condition variables
against Pthreads locks and condition variables to answer two
questions:

1. Do transactional condition variables exhibit any perfor-
mance pathologies?

2. Can transactional condition variables perform as well as
and replace replace regular condition variables in lock-
based programs?

We answer the first question with a microbenchmark that
stresses the synchronization system, and the second one by
converting two lock-based programs to use transactions.

7.1 Evaluation Platform

We implement both deferred-signal and speculative-signal
condition variables for OpenSolaris by extending the libc
library with transactional condition variable functions. The
new implementation added approximately 400 lines of code,
similar in length to the existing condition variable functions.

We evaluated both implementations on the LogTM-SE
transactional memory system [28]] from the latest public re-
lease of the Multifacet GEMS System Simulator [15]. The
GEMS simulator integrates accurate functional SPARC pro-
cessor modeling provided by Virtutech Simics [26] with a
detailed memory system simulation model. We simulate a
thirty-two-core processor with a shared L2 cache. The key
configuration parameters are given in Table 2.

LogTM-SE implements eager version management (also
known as direct update) and eager conflict detection. We
adopt the hybrid conflict resolution with a write-set predictor
proposed to resolve pathologies associated with eager ver-
sion management and eager conflict detection [3]].

7.2 Workloads

We use the cascaded_cond microbenchmark from the lib-
Micro version 0.4.0 microbenchmark suite [25] to test the
performance of transactional condition variables and the
FluidAnimate and StreamCluster programs from the PAR-

Processor UltraSPARC-III+
Number of Processors 32

L1 Cache 32 KB, 4-way, 1 cycle
L2 Cache 8 MB, 2-way, 21 cycle
Main Memory 16 GB
Memory Configuration NUMA (balanced)

Operating System OpenSolaris release snv_31

Table 2. Key features of the simulated processor.

SEC shared-memory application suite [1]. Several work-
loads require a management thread, while others only sup-
port powers of two for thread counts. Thus, we could not
employ all 32 processors across all workloads. To keep
the worker thread count constant, we therefore use sixteen
worker threads.

LibMicro is a portable set of microbenchmarks used by
Solaris engineers to measure the performance of various li-
brary calls such as conditional variable signal and wait [25].
Threads are arranged in a ring. Each thread has two locks on
which it blocks, and threads manipulate the locks belonging
to the thread following it in the ring. We converted all locks
and condition variables to use transactions.

The PARSEC benchmark suite is intended for x86 ma-
chines running Linux and therefore required conversion to
SPARC/Solaris. Not all PARSEC benchmarks lend them-
selves easily to such a conversion and only a subset of these
benchmarks are suitable for transactional memory as many
benchmarks synchronize infrequently. We selected FluidAn-
imate and StreamCluster for their use of condition vari-
ables and ease of porting. StreamCluster uses condition vari-
ables to order the master thread creating work with the slave
threads waiting for work. FluidAnimate executes five ker-
nels to simulate an incompressible fluid and uses barriers to
delimit simulation stages. We converted the barriers to use
conditional signal and wait within transactions. In addition,
we converted all other uses of mutex locks to transactions.
For both programs, we use the largest input size.



16 threads/ 32 processors

100

80—

60

Execution Time (% lock execution time)

[ Critica
[ Lock
I Commiting
Wait
1 Trans
NonTrans

Figure 9. Relative performance of lock and both TM condition variable implementations for libMicro, FluidAnimate, and Stream-
Cluster. The lock version is labeled (L), the speculative-signal version (S),and the deferred-signal (D). Time spent waiting for condition
variables is labeled *Wait’; time outside locks and condition variables is labeled "NonTrans’, and time spent acquiring and releasing

locks is labeled ’Lock’

7.3 Results

The results of the simulation are shown in Figure [9] broken
down by where each workload spends time in each imple-
mentation. We normalize results to the original locking ver-
sion of each program. Each program exhibits different be-
havior demonstrating how implementation differences im-
pact performance.

The libMicro workload, shown on the left, does nothing
but conditional synchronization. As a result, it spends most
of its time waiting and there is little time spent outside wait-
ing or lock functions. We observe two aspects of TM condi-
tion variables. First, even under this stressful workload they
show no pathologies, indicating that they can be as robust as
lock-based condition variables. Second, we observe that the
speculative-signal condition variable reduces execution time
for this workload, because it spends less time waiting. Sig-
naling early, while the transaction is still executing reduces
the wake-up latency and allows waiters to begin executing
even before the signaler commits. Thus, speculative-signal
condition variables reduces total execution time by 10%. In
contrast, the deferred-signal implementation increases exe-
cution time by 9% because waiting threads must wait longer
to be signaled. In addition, the time spent signaling, which
shows up as time spent committing, is longer for deferred-
signal because of the cost of trapping to execute a commit
action. In comparison, the time to signal with speculative-
signal, which is counted as time spent in the transaction (la-
beled *Trans’), is short because escape actions add no appre-
ciable overhead.

FluidAnimate and StreamCluster demonstrate the suc-
cessful use of TM condition variables in larger programs.
In both programs, both condition-variable implementations
behave identically because little time was spent in condi-
tional synchronization. Thus, transactions and TM condi-

tion variables are a viable replacement for locks. Further-
more, we see that neither program spends much time hold-
ing a lock in a critical section (labeled ’critical’ in the fig-
ure) or within transactions (labeled *Trans’). However, per-
formance for FluidAnimate improves noticeably with trans-
actions. The breakdown in Figure [9]shows why: the locking
version spends 15% of its execution time executing locking
functions. This cost is reduced by removing lock contention
with transactions and because transaction begin/commit ex-
ecutes faster than acquiring and releasing a lock. Previ-
ous work has shown that replacing spin locks with TM
make critical sections faster by removing expensive lock ac-
cesses [0, 20]. Finally, StreamCluster has few critical sec-
tions and few condition variable operations. Therefore, all
three versions perform the same.

These tests demonstrate that transactional condition vari-
ables can perform as well as or better than lock-based condi-
tion variables. Furthermore, the PARSEC benchmark results
show that they enable replacement of locks with transactions
that might not otherwise be possible.

8. Conclusions

Despite the advances in transactional synchronization, con-
dition variables will remain an important mechanism. We
find that adapting condition variable implementations to
transactions requires consideration of conflicts between con-
current signalers and waiters.

We present two alternative implementations of condi-
tion variables for transactional memory, speculative-signal
and deferred-signal. They may both be implemented upon
an underlying TM system without knowledge of its im-
plementation. The two implementations place different, but
modest, requirements on the TM system: deferred-signal re-
quires commit actions to defer signaling until commit, and



speculative-signal requires escaping transactions to call into
the kernel within a transaction. Both work across a wide va-
riety of TM systems, and their performance differs based on
their ability to overlap execution (speculative-signal allows
more overlap) and on the relative cost of their underlying
operations.
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