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Abstract
This workshop paper explores some ideas for value predic-
tion and data speculation in hardware transactional memory.
We present these ideas in the context of false sharing, at the
cache line level, within hardware transactions.

We distinguish between coherence conflicts, which may
result from false sharing, from true data conflicts, which we
call transactional conflicts. We build on some of the ideas
of Huh et al. [1] to speculate in the presence of coherence
conflicts, assuming no true data conflicts. We then validate
data before committing. This dual speculation avoids abort-
ing and restarting many transactions that conflict through
false sharing.

We show how these ideas, which we call Transactional
Value Prediction, can be applied to a conventional best-effort
hardware transactional memory. Our preliminary model,
β-TVP, does not alter the underlying cache coherence proto-
col beyond what is already present in hardware transactional
memory. β-TVP requires only minor, processor-local modi-
fications to a conventional best-effort hardware transactional
memory.

Simple benchmarks show that β-TVP can dramatically
increase throughput in the presence of false sharing, while
incurring little overhead in its absence.

1. Introduction
Parallel programming is fast becoming a reality. Most pro-
cessor manufactures today are producing chips with multi-
ple cores [2–6]. However, software engineering tools have
not kept up in making it easier for programmers to take full
advantage of these chips. It is difficult to write correct par-
allel programs for reasons such as deadlock, livelock, star-
vation, and data races [7, 8]. It is also difficult to write ef-
ficient parallel programs for reasons such as the restrictions
imposed by Amdahl’s law [9, 10], convoying [8], and false
sharing [6, 11–13].

Transactional Memory [14], a promising new program-
ming model, attempts to alleviate some of these concerns.
So do other mechanisms, such as Speculative Lock Elision
(SLE) [15] and Transactional Lock Removal (TLR) [16].

In this paper, we investigate different ideas that could be
used to improve performance within hardware transactional

memory, by taking advantage of value prediction and data
speculation. We explore the ideas of Transactional Value
Prediction, in the context of mitigating the effects of false
sharing in hardware transactions.

The inspiration for this work is that when inside a transac-
tion, the processor is already in speculative execution mode.
Therefore, it can speculate on data in ways that might be
infeasible outside transactions. Such speculation would be
correct if the values speculated on are not going to be pro-
duced by other transactions. If we manage to harness this
observation, we could use it to improve performance by re-
ducing memory latencies and conflicts between transactions,
among other things.

Value prediction, in the context of hardware transactional
memory, can be applied as long as we ensure the assumed
values are correct before committing. Only then should a
transaction be able to commit successfully.

One particular aspect of data speculation in general, pro-
posed by Huh. et al. [1], is the speculation on load values,
typically by conjecture from stale values in the cache, as a
solution to the problem of false sharing.

The problem of false sharing, specifically at the cache line
level, is not an easy problem to solve. It could degrade per-
formance significantly [12], possibly causing transactions to
completely serialize or even worse [17, 18]. False sharing
has often been discovered by experts on transactional mem-
ory and parallel programming in their work [17–28]. To the
best of our knowledge, no existing hardware transactional
memory handles the issue of false sharing at the cache line
level.

False sharing can be mitigated by careful data layout,
for example, by aligning the data to cache line boundaries
and padding it to fill the whole cache line. This approach
increases internal fragmentation and decreases the effec-
tive cache size, partially canceling the performance gains
achieved. Moreover, transactions might include code from
external libraries not optimized to handle false sharing,
which programmers cannot easily modify.

In our opinion, if transactional memory is to truly make
it easier to write parallel programs, it must avoid the worst
effects of false sharing.

We believe the techniques of Transactional Value Pre-
diction, which we introduce by presenting an initial model,
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β-TVP, could help improve performance and mitigate the ef-
fects of false sharing within hardware transactions. β-TVP is
a work in progress that addresses the problem of false shar-
ing inside transactions by applying methods built on some
of the ideas in the work of Huh et al. [1].

By conjecturing about stale cache line values, β-TVP
could mitigate the effects of false sharing and improve per-
formance on several fronts. First, β-TVP reduces serializa-
tion of transactions falsely sharing the same cache lines.
β-TVP allows transactions to run using stale values without
stalling or aborting, while simultaneously issuing a request
for the appropriate cache line permissions and data.

Second, β-TVP detects transactional conflicts based on
changes in the values read from the cache, rather than relying
solely on coherence conflicts. This enables β-TVP to detect
transactional conflicts at any desired granularity level rather
than the level of a whole cache line. Moreover, by detecting
conflicts this way, β-TVP improves performance in the pres-
ence of silent stores [29] and temporally silent stores [30].

A silent store is when the same value is written to the
cache line, resulting in the line being acquired exclusively
without actually changing its value. Such an occurrence
would stall or abort hardware transactions in different im-
plementations, such as LogTM-SE [22] and ATMTP [31],
but would not cause a β-TVP transaction to abort. Note that
accommodating silent and temporally silent stores makes it
possible for some truly conflicting transactions to execute
concurrently.

Finally, β-TVP only needs to acquire cache lines in their
correct state, whether it is a shared or an exclusive one, just
prior to commit time. This reduces the window where con-
flicts between transactions might occur, potentially increas-
ing concurrency.

The modifications required to implement β-TVP are lim-
ited to the local processor; no changes to the underlying
cache coherence protocol are needed beyond what is already
present in hardware transactional memory. The concepts pre-
sented here could equally be applied to different hardware
transactional memory implementations and to lock-based
mechanisms such as SLE and TLR.

Transactional Value Prediction and β-TVP are still a
work in progress. We do not believe that β-TVP is the only
way of taking advantage of these ideas. This is, however, the
first step in our investigation.

This paper is organized as follows: section 2 describes
the false sharing problem, explaining why solving this prob-
lem could improve performance and also make it easier to
program. In section 3, we propose our preliminary imple-
mentation of β-TVP, with details of how it could fit in with
existing hardware transactional memory. Section 4 presents
our preliminary evaluation of β-TVP. Section 5 briefly de-
scribes some of the related work. Finally, we discuss some
ideas for future work and end with concluding remarks.

2. The False Sharing Problem
The problem of false sharing, and its impact on performance
is a well known problem [6, 11–13]. False sharing occurs
when a cache line contains unique data objects being refer-
enced by different processors. Since the cache line is the unit
of granularity for coherence, these nonconflicting accesses
nevertheless force serialization of access.

False sharing is not an easy problem to solve. Most solu-
tions we have encountered in existing literature and from our
own experiences are oriented towards the restructuring and
padding of data, so that nonconflicting accesses to separate
data objects are also nonconflicting as far as the coherence
protocol is concerned.

False sharing is a tricky problem because programmers
often include external library functions in their code. Even
if the programmers’ own code does not suffer from false
sharing, by including code that does, the whole program
could suffer. Often, accessing and modifying such external
code is difficult or infeasible.

Huh et al. [1] observed that on a read cache miss, a
processor requests, stalls, and eventually obtains both the
needed permissions and data in one go. However, the pro-
cessor may already have the correct data in one of its caches
but without the required permissions, i.e., a stale cache line.
By separating the request for the needed permissions from
the use of the data, the processor does not need to stall, but
can speculate using the stale data until the permissions ar-
rive.

Speculating on stale data might, of course, be counterpro-
ductive at times. Whether such speculation improves perfor-
mance or not depends on the benefit of correct speculation,
the cost of recovery, and the ratio of correct to incorrect spec-
ulation [1]. Huh et al. demonstrate that their method greatly
reduces performance losses due to false sharing.

Huh et al. also recognized that writing to shared data
can also be broken into steps, in which the write can be
performed first but not committed until permissions are ac-
quired. This could reduce the need to stall on writes.

Huh et al.’s proposal requires additional support beyond
typical microarchitecture speculation hardware [1]. How-
ever, this support exists, or would exist, in a processor that
implements hardware transactional memory, such as Sun’s
upcoming Rock processor [31], and Azul’s optimistic con-
currency processors [32].

False Sharing in Transactions
False sharing is a bigger problem when it occurs in conjunc-
tion with hardware transactional memory [18]. Many hard-
ware transactional memory implementations detect transac-
tional conflicts based on cache coherence conflicts. Cache
line permissions are usually needed for the duration of a
transaction. Therefore, false sharing causes a transaction to
stall while it waits for the cache line to come in. Even worse,
since hardware does not distinguish between true and false
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Figure 1. A demonstration of the false sharing problem
with two concurrent transactions. (a) ideal case (b) hardware
transactional memory (c) a solution that mitigates the prob-
lem of false sharing.

sharing, false conflicts may cause a transaction to abort or se-
rialize as it waits for other transactions to complete [17, 18].

The example in Figure 1 shows the timeline of two con-
current transactions. These transactions access different lo-
cations within the same cache line at one point during their
execution, i.e., false sharing. The transactions in this exam-
ple at no point have any true conflicts.

Ideally, these transactions should be able to run com-
pletely in parallel as shown in (a). However, hardware trans-
actional memory implementations, such as LogTM-SE, in-
fer a transactional conflict whenever a coherence conflict is
detected. Thus, such implementations do not distinguish be-
tween true and false sharing, thereby stalling transactions as
shown in (b), or even aborting them.

We expect a solution to the problem of false sharing to
result in an execution timeline similar to the one shown
in (c). Such a solution would likely not eliminate all the
delays caused by false sharing, since some cache data still
needs to be communicated. However, it should be able to
mitigate these effects by overlapping the delay with other
speculative operations.

Since hardware transactional memory is particularly sus-
ceptible to false sharing at the cache line level, its cascading
effects potentially have a much greater impact on through-
put than in non-transactional applications [17,18], including
software transactional memory.

3. Transactional Value Prediction
3.1 Overview
This section introduces some of the ideas of Transactional
Value Prediction by the example of β-TVP. β-TVP attempts
to alleviate, and in some cases eliminate, the effects of false
sharing as follows.

The first aspect is speculating on a load using stale cache
line data. If a cache line is present but is stale, β-TVP allows
transactions to speculate based on the stale data, validating
the read data later. β-TVP assumes that the cache line was
invalidated due to false sharing rather than a true conflict.
If this assumption is correct, it is indeed false sharing and
β-TVP could eliminate most of the effects of false sharing.
If it is true sharing, then the transaction aborts. However, if
β-TVP had not speculated the transaction might have stalled
or aborted anyway.

For the second aspect, instead of detecting transactional
conflicts using the cache coherence protocol, β-TVP detects
such conflicts based on value changes. A cache coherence
conflict triggers validation which will eventually compare
the data read inside the transaction with the new data. This
reduces the effects of false sharing since in β-TVP, transac-
tional conflicts are restricted to changes in the data used in-
side a transaction rather than coherence conflicts over whole
cache lines.

Another aspect is that β-TVP, conservatively perhaps,
does not exclusively request cache lines that are part of a
transaction’s write set until commit time. This reduces the
window in which conflicts might occur. This is in the spirit
of Huh el al.’s suggestion that writing to shared data can be
broken into steps in which a write can be performed, with
the write’s effects being invisible to other processors until
the end of the transaction [1].

It might seem that β-TVP uses lazy conflict detection.
However, lazy conflict detection is defined by Bobba et al.
[33] to be that conflicts are detected when the first of two or
more conflicting transactions commit. A more accurate way
of describing β-TVP would be to use the taxonomy of Larus
and Rajwar [8]: β-TVP detects conflicts on validation rather
than on open (eager in [33]) or commit (lazy in [33]).

In β-TVP, a coherence conflict is not interpreted as a
transactional conflict. Instead, a coherence conflict triggers a
validation request. This validation request is served later and
may or may not trigger a transactional conflict, depending on
which parts of the cache line have changed. β-TVP does not
wait until the end of a transaction to resolve such conflicts,
and all conflicts must be resolved before a transaction can
commit.

3.2 Detailed Description
We now describe β-TVP, an illustration that uses some of the
ideas of Transactional Value Prediction, using Sun’s ATMTP
[31] as an example hardware transactional memory frame-
work. We emphasize that the ideas presented in this work
could apply to many speculative execution schemes. ATMTP
is used mainly due to its relationship to the upcoming Rock
processor.

ATMTP is a best-effort hardware transactional memory
that uses eager conflict detection and lazy version manage-
ment, as writes are stored in a write buffer until the transac-
tion commits.
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We note that, for the time being at least, we have re-
frained from adding features to β-TVP that are not relevant
to Transactional Value Prediction. Such changes could dis-
proportionately benefit both ATMTP and β-TVP.

Loading a Value
A transaction in β-TVP begins as a normal ATMTP one. If
a transaction attempts to load a memory location and that
location is not present in the L1 cache (rather than stale),
then the protocol proceeds as normal. Moreover, if the cache
line is present and is in a valid state1, then the load also
proceeds normally.

If the cache line is stale2, β-TVP serves the load by using
the stale data while simultaneously issuing a cache request
for the data. The load proceeds as if it were a cache hit, and
does not wait for the response of the cache request before
continuing execution.
β-TVP adds additional read mark bits to all cache lines to

indicate which parts of the line have been read. Each mark
bit monitors reads from a subset of the cache line, i.e., the
mark bit is set when its associated subset is read inside a
transaction. These bits are used during validation where only
the parts of the stale cache line with their mark bits set are
validated.

The number of mark bits added per cache line determines
the granularity level of β-TVP’s conflict detection. In other
words, the greater the number of mark bits the finer the
granularity, and the more cases of false sharing that can be
detected. This could conceivably go down to the individual
bit level.

For example, assuming a 64 byte cache line and a conflict
detection granularity level of 4 bytes, β-TVP requires an
additional 16 mark bits in each cache line.

When a processor receives a response to a cache request,
the data in the cache whose mark bits are set is validated
against the new data in the response. If the validation suc-
ceeds then the transaction proceeds as normal. However, if
the validation fails, the transaction aborts and the mark bits
are cleared. In all cases, the old cache line data is replaced
with the new data in the response.

Storing a Value
When a transaction performs a store, ATMTP would nor-
mally request exclusive access to the cache line and stall
while it obtains the correct permissions, after which it would
write the data to the write buffer. β-TVP stores, regardless
of the current state of the line, do not generate any cache
requests, and are redirected immediately to the write buffer.
Thus the stall time taken is equivalent to a cache hit.

1 Shared, Exclusive or Modified in a MESI protocol
2 present but marked Invalid in a MESI protocol

Conflict Management
As for handling conflicts in the cache coherence protocol:
when an ATMTP transaction (T1) requests a cache line
which is part of another transaction’s (T2) read or write sets,
whether the request is for shared or exclusive access, then the
requester, T1, always wins, aborting the transaction T2.3

Using β-TVP, whenever a cache line in a transaction
is invalidated, the contention management policy does not
abort the transaction as it would in ATMTP, nor does it deny
the invalidation request. Instead, β-TVP would invalidate
the cache line, re-request it, and continue execution without
stalling for the request. When the request for the invalidated
cache line completes, the validation procedure mentioned
earlier is triggered.

Cache Line Evictions
In ATMTP and β-TVP, if a cache line that is part of a trans-
action’s read set is evicted from the L1 cache, the transaction
has to abort. β-TVP must abort because it cannot keep track
of the original value that it has read; therefore, it cannot val-
idate it later. That said, L2 evictions, unlike in ATMTP, do
not cause a β-TVP transaction to abort. Instead, an invali-
dation of the cache line is triggered, the line is re-requested
and then validated.

Committing a Transaction
At commit time, ATMTP flushes its write buffer by issuing
store requests of all the values in its write buffer. Because
ATMTP already has all its lines in their correct commit
states4, this is sufficient to complete the transaction.

In β-TVP, when a transaction is ready to commit, parts
of its read set might not be in a valid state, and parts of
its write set might not be in an exclusive state. Therefore,
β-TVP employs a two stage commit for its transactions.

The first stage, β-TVP issues shared cache requests to all
stale lines in the cache that are part of the transaction’s read
set but not its write set, if those cache lines have not already
come in from the validation procedure mechanism earlier.
All the while, that same validation mechanism would apply
to each incoming cache line, thereby aborting the transaction
if data that is part of the read set has changed.
β-TVP then issues exclusive cache requests to all lines in

the cache that are part of the transaction’s write set but are
not in an exclusive state. Once all the cache lines are in their
correct commit state, β-TVP moves to the second commit
phase, which is a normal ATMTP commit.

We note that β-TVP issues only one cache request at a
time and, conservatively, waits for a response before issuing
another request.

3 ATMTP also provides the ability to use a timestamp-based conflict man-
agement policy [33], whereby the requester only wins if it is an older trans-
action.
4 Lines that are written to are in an exclusive state, i.e., E or M in a MESI
protocol. Lines that have only been read are in a valid state, i.e., S, E or M
in a MESI protocol.
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The contention management policy during β-TVP’s first
commit phase is different from that during a β-TVP trans-
action. Invalidation requests for cache lines that are either
part of the β-TVP transaction’s read or write sets are de-
nied (nacked). To prevent deadlocks, the simplest thing to do
would be for the committing transaction to abort if a cache
request it has sent was denied during this first commit phase.

A more sophisticated contention management policy,
which we have adopted, is as follows: if a cache line in-
validation request comes in during the first commit phase,
the transaction would acknowledge it if and only if the re-
quester is also committing and has higher priority (e.g., as
determined using timestamps [18,33]), otherwise the request
would be denied.

Using this scheme, there is no need to abort in the commit
phase if a request issued by the committing transaction was
denied; a transaction would just reissue the request. Dead-
locks cannot occur if the priority is unique (i.e. no two trans-
actions can have the same priority level).

Miscellany
It is worth noting that since a β-TVP transaction speculates
on stale data, it could cause inconsistent execution [8], which
might trigger certain traps (e.g., divide by zero). This is
not a problem as ATMTP, by default, aborts a transaction
if it encounters such a scenario. Inconsistent execution, if
left unhandled, could also cause infinite loops [8]. However,
infinite loops are not a problem in β-TVP as stale data is
validated within a bounded period of time. Therefore, data
cannot be inconsistent indefinitely.

It is also worth noting that β-TVP assumes all conflicts
are due to false sharing, probably a good assumption when
false sharing is common. We believe that while the cost of
speculation, even in the presence of true sharing, is low, in
some cases it might be helpful if β-TVP were to recognize
true sharing and handle such cases accordingly. This is one
of the areas we are currently investigating.

3.3 β-TVP Architecture
β-TVP should be compatible with any cache coherence pro-
tocol with states denoting shared, exclusive, and stale cache
lines. It should not matter whether it is a snooping or a direc-
tory based protocol [34–37]. Moreover, β-TVP should also
be compatible with existing hardware transactional mem-
ory proposals that detect conflicts using the cache coherence
protocol.
β-TVP does not modify the existing coherence protocol

used in ATMTP, and adds little processor-local hardware.
The additional hardware requirements are as follows.

First, β-TVP requires additional bits per cache line for
the read mark bits. These bits are only necessary for the
transactional cache. For instance, ATMTP’s transactional
cache is the L1 cache; therefore, these bits are only added
to the L1 cache and not the L2 cache.

Second, we are assuming the capability of flash clearing
the read mark bits. This is only desirable for performance, it
is not required for correctness. If these bits cannot be flash-
cleared, they could be cleared sequentially, at the cost of
potential phantom conflicts in future transactions.

Third, β-TVP requires the ability to validate cache lines
that are part of a transaction’s read set against incoming data.
The incoming data could be buffered in an MSHR [38] while
the validation takes place, and extra logic needs to be added
to compare the values being validated.

We believe the above requirements would be the greater
part of the additional logic needed for β-TVP. Some of this
additional hardware could also be used for an implementa-
tion similar to the one described by Huh et al. [1], which
would also be beneficial outside transactions.

3.4 β-TVP Design Alternatives
β-TVP is the first prototype that uses the ideas of Transac-
tional Value Prediction. We have encountered many points
where alternative design decisions could have been made.

Our initial goal was to prepare a simple prototype that
requires as few changes as possible, trying not to give β-TVP
an advantage over ATMTP in the absence of false sharing
and contention. We do not claim any decisions we have made
are optimal, and there is definitely room for improvement.
Some of the design decisions we contemplated follow.

• β-TVP uses ATMTP as its baseline implementation,
mainly due to its relationship with the upcoming Rock
processor. ATMTP is but one of many implementations
that might benefit from Transactional Value Prediction.

• We have not modified the cache coherence protocol for
simplicity. Some modifications to the coherence protocol
might improve performance, as demonstrated by Huh et
al. [1].

• β-TVP speculates on stale cache line data. Other forms of
value prediction, especially in the absence of stale data,
might be better suited.

• β-TVP tracks read data using read mark bits. Other meth-
ods, such as using tables or signatures, are also possible.

• β-TVP assumes the existence of a write buffer, as it is
already present in ATMTP. A write buffer is not required,
and can be replaced by other means.

• β-TVP does not request cache lines that are part of the
write set exclusively until commit time. Requesting cache
lines exclusively before reaching the commit phase could
reduce the time a β-TVP transaction would stall before
committing.

• Contention management is a complex topic with differ-
ent tradeoffs [33]. It is not clear whether eager vs. lazy
conflict detection or version management is better. Trans-
actional Value Prediction might affect this choice.

5 TRANSACT 2009



• β-TVP always speculates on stale cache line values. Such
speculation, if wrong, could abort a transaction. There-
fore, at times, it might be better to stall, or to take another
checkpoint then speculate.

• When β-TVP speculates on a stale cache line, or if a
cache line it has read gets invalidated, it issues a vali-
dation request immediately. In certain contexts, it might
be better to defer issuing a validation request to a later
time.

• β-TVP always acknowledges invalidation requests, un-
less a transaction is in its commit phase. It might be bet-
ter to deny invalidation requests, or abort altogether, if
the line being invalidated might be truly shared.

• The current cache line replacement policy treats all in-
valid and invalidated cache lines the same. β-TVP might
benefit if the replacement policy prefers stale cache lines
that are part of a transaction’s read set to those that are
not.

• A β-TVP transaction aborts if a cache line in its read set
gets evicted, even if that line is stale. By having a solution
analogous to a victim cache [39], some aborts could be
prevented.

• β-TVP issues only one cache request at a time and can
only have one pending request at a time. Increasing the
number of cache requests it can issue and the number of
requests that can be pending could improve performance.

4. Preliminary Evaluation
4.1 Simulation Environment
Our simulation framework is based on Virtutech Simics [40],
in conjunction with customized memory models built on
the University of Wisconsin GEMS 2.1 [41]. The simula-
tor models processors that have best-effort hardware trans-
actional memory support, using Sun’s ATMTP simulation
framework [31], itself a component of GEMS 2.1.

The simulated environment models a SPARC-V9 multi-
core processor [42], with a shared L2 cache and a private
transactional L1 cache. It uses a MESI directory-based cache
coherence protocol.

When simulating ATMTP, we use its default parameters
[31]; however, we have increased the size of the write buffer
to 64 entries (from the default 32) to ensure that all transac-
tions succeed in hardware. We have also changed the conflict
management protocol to timestamp [33].

We note that while the ATMTP simulator is a Rock-like
simulator, we are not trying to simulate Rock. What we are
aiming for is a best-effort hardware implementation that has
some restrictions that might be expected in Rock.

To simulate β-TVP, we have extended ATMTP without
modifying the cache coherence protocol. We have recently
finished writing the simulator additions for this proposal; at

the time of the writing of this paper, we have had limited
chance to test it on a full range of benchmarks.

The next section describes the experiments we ran to
obtain a preliminary estimate of the benefits of β-TVP.

4.2 Experiment Description
We have created a group of synthetic benchmarks in an at-
tempt to cover a range of real world sharing scenarios. These
benchmarks are by no means comprehensive or conclusive,
but merely evidence collected to date to support our intu-
ition.

The following experiments were run on a simulated
8-processor SPARC-V9 machine using the ATMTP environ-
ment described earlier. Each experiment involves running 1,
2, 4, and 7 threads each on a separate processor5, with each
thread performing 200 transactions. The transactions have
been chosen so that the only reason they would abort is due
to conflicts with other transactions, i.e., they will eventu-
ally succeed from retrying. As such, there is no need for a
software fallback mechanism.

We are comparing the throughput of ATMTP, β-TVP
with false sharing conflict detection granularity of 4 bytes
(one word6 — TVP-4), and also 64 bytes (a whole cache
line — TVP-64). TVP-64 is not an attempt to mitigate the
effects of the false sharing; however, it is used as a control
experiment to account for the different contention mecha-
nisms used in ATMTP and β-TVP.

Below is a description of the experiments we ran.

False sharing followed by no sharing: All threads start by
incrementing different parts of the same one cache line,
followed by incrementing 39 different cache lines.

No sharing followed by false sharing: All threads start by
incrementing 39 different cache lines, followed by incre-
menting different parts of the same one cache line.

False write sharing: All threads increment different parts
of the same 40 cache lines.

True write sharing: All threads increment the same part of
the same 40 cache lines.

Read-write false sharing: The first thread increments 40
different cache lines, while all other threads read the
same 40 cache lines. However, the reads and writes (in-
crements) are to different parts of the same cache lines.

Read-write true sharing: The first thread increments 40
different cache lines, while all other threads read the
same 40 cache lines. However, the reads and writes (in-
crements) are to the same parts of the same cache lines.

5 The simulated environment runs more smoothly with a dedicated proces-
sor for kernel-related events, as recommended by the Wisconsin GEMS
group.
6 The definition of a word is architecture dependent. The SPARC Architec-
ture Manual, version 9 [42], defines a word as a quadlet (4 bytes). This is
the default size of an integer (int) on a SPARC-V9 platform.
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Figure 2. Comparative throughput of different schemes, normalized to the throughput of a single processor (higher is better).
(a) false sharing followed by no sharing (b) no sharing followed by false sharing (c) false write sharing (d) true write sharing
(e) read-write false sharing (f) read-write true sharing

4.3 Preliminary Results and Analysis
Figure 2 presents the results from the experiments men-
tioned earlier. The results show the throughput of the differ-
ent tests normalized to the throughput of a single processor,
which is the same in all cases of a single benchmark.

A small amount of false sharing can have a big impact
on throughput as seen in (a) and (b), which outline the
results for having only one falsely shared cache line among
no sharing at all. If false sharing occurs at the beginning
of a transaction as in (a), then ATMTP fully serializes the

7 TRANSACT 2009



transactions. On the other hand, if false sharing occurs at the
end of a transaction as in (b), then there is more parallelism
in ATMTP but throughput still does degrade.

We note that in (b), ATMTP throughput does not improve
going from 2 processors to 4. Investigating this showed that
in this particular example, transactions are synchronized in
a pattern at 4 processors that is causing a higher number of
them to abort, due to true data conflicts.

In this case of having little false sharing (a,b), using
TVP-4 seems to have completely mitigated the effects of
false sharing, almost achieving perfect parallelism. TVP-64
underperforms ATMTP in (b), probably due to differences
in conflict management.

The chart in (c) shows throughput with false sharing
over a big write set. ATMTP throughput degrades, com-
pared to the single-threaded case, since the cache lines thrash
between threads. TVP-4 significantly mitigates this effect.
However, TVP-4 does not provide perfect parallelism since
the cache lines still need to be exclusive at commit time.
TVP-64 outperforms ATMTP in this scenario, probably be-
cause of the different contention management. We note that
TVP-4’s throughput drops going from 4 to 7 processors, pos-
sibly due to the higher level of contention over the cache
lines during the commit phases of the different processors.

The chart in (d) shows throughput with true sharing over a
big write set. Unsurprisingly, performance degrades regard-
less of the mechanism used. That said, TVP-4 and TVP-64
outperform ATMTP, probably for the same contention man-
agement reasons mentioned earlier. Observe that TVP-4 per-
forms no worse than ATMTP despite speculating incorrectly
about the presence of false sharing.

When there are many readers and a single writer as in (e)
and (f), ATMTP does not scale well since that one writer
cannot run in parallel with any readers. TVP-4 allows that
writer to run in parallel with other readers if it is false shar-
ing. If it is true sharing, then TVP-4 and TVP-64 only serial-
ize the writer and readers during the writer’s commit phase,
rather than the whole duration of the writer’s transaction.

It is worth noting that the thread running on the first pro-
cessor in (e) and (f) is a writer thread. From that point on, all
new threads are read-only threads. This explains why perfor-
mance degrades in some cases going from 1 to 2 processors,
but improves after that point.

We have covered a variety of different sharing scenarios,
but this is by no means conclusive. There probably are sce-
narios where ATMTP would outperform β-TVP. We think
that such scenarios, however, are rare and that even in their
presence β-TVP would not suffer much. This is a work in
progress, and we are still in the course of investigating dif-
ferent possibilities using more benchmarks.

5. Prior Work
Huh, Chang, Burger, and Sohi’s work on Coherence Decou-
pling [1] proposes a solution to the problem of false shar-

ing. One of the methods they suggest is speculating based
on the values of stale cache lines. We have applied some of
the concepts they propose to transactional memory, taking
advantage of the speculative execution inherent in it. Unlike
their work, we do not alter the underlying coherence proto-
col beyond what is already present in hardware transactional
memory.

Torrellas, Lam, and Hennessy [43] propose some solu-
tions to the false sharing problem. Their work investigates
the relationship between false sharing and spatial locality,
and proposes compiler modifications that optimize the lay-
out of shared data in cache lines to mitigate its effects.

Kadiyala and Bhuyan [44] propose a hardware solution to
the problem. Their work suggests maintaining coherence on
small cache lines, while using larger lines containing several
of these small lines as the unit of transfer. They argue that
this would reduce false sharing while retaining the benefits
of having larger cache lines.

Lepak, Bell, and Lipasti [29] explore the recurrence of
previously seen values in a program. They also explore new
definitions of false sharing based on changes, or lack thereof,
in the values being stored. Lepak and Lipasti [30] exploit this
phenomenon in their work on the MESTI protocol to reduce
memory traffic and improve performance. Their work, how-
ever, is not based on speculative execution.

Olszewski, Cutler, and Steffan propose JudoSTM [45],
a dynamic binary-rewriting software transactional mem-
ory that detects conflicts based on value changes. By us-
ing value-based conflict detection, JudoSTM also improves
performance in the presence of silent stores. However,
JudoSTM does not address the problem of false sharing.

6. Future Work
Transactional Value Prediction is still a work in progress.
There are many issues we intend to address in the near future
and alternative design options we intend to explore, such as
the ones in section 3.4.

We have presented the ideas of value prediction and data
speculation in hardware transactions, mainly in the context
of mitigating the effects of false sharing. We believe there
may be other forms of taking advantage of these ideas, and
we intend to explore these venues.

Speculating in the case of true sharing, rather than false
sharing, might not always be a good idea. We would like to
investigate in more depth the impact of such misspeculation,
and look into methods that differentiate between cases of
true and false sharing, and deal with them appropriately if
needed. One such method would be to extend the contention
management policy to disallow sharing of cache lines that
might be involved in true sharing.

This could be achieved in several ways, for example, by
counting the number of set read mark bits in the cache line.
If the number of set bits exceeds a certain threshold, all
requests to that line would be denied or redirected to the
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contention management mechanism. Another way would be
to maintain a history of true conflicts in cache lines, and use
that history as a predictor of false sharing.

The preliminary β-TVP results presented in this paper are
based on a set of synthetic benchmarks we have created.
We are in the process of testing β-TVP using a subset of
the STAMP benchmarks [46], as well as some of the mi-
crobenchmarks used in many transactional memory evalua-
tions, such as red-black trees, linked-lists and chained-hash
tables [47]. We note some of these benchmarks may already
be tuned to work around false sharing; therefore, we need to
investigate the best way of using these benchmarks to evalu-
ate our ideas.

We have chosen ATMTP as the framework to use with
β-TVP, mainly because it simulates an environment simi-
lar to the upcoming Rock processor. However, these ideas
could apply to many different hardware transactional mem-
ory implementations, and other similar lock-based mecha-
nisms such as SLE. We are also considering applying these
ideas to LogTM-SE [22].

LogTM-SE allows the eviction of cache lines that are
part of the read set; such an eviction would abort a β-TVP
or ATMTP transaction. An example of applying β-TVP to
LogTM-SE could handle evictions by invoking nested trans-
actions whenever the value prediction mechanism is used.
Thus, only values that are part of the nested transaction’s
read set cannot be evicted without aborting the nested trans-
action.

We have presented our ideas mainly in the context of
false sharing, and to a lesser extent in the context of silent
stores. We are also investigating how Transactional Value
Prediction could improve performance and make it easier to
program in other contexts.

7. Concluding Remarks
In this workshop paper, we have introduced Transactional
Value Prediction, ideas for data speculation and value pre-
diction in hardware transactional memory. We presented
these ideas mainly in the context of mitigating the effects of
false sharing. However, we believe that there may be other
ways of using Transactional Value Prediction to improve
performance of hardware transactions.

We have also explained how false sharing, at the cache
line level, could negatively affect both performance and ease
of programming. Therefore, we believe it is an important
issue to address in hardware transactional memory.

We developed a preliminary proposal, β-TVP, as one
example that uses some of these ideas in an attempt to
address the problem of false sharing. We have demonstrated
that, at least in some cases, β-TVP can alleviate, or even
eliminate, the effects of false sharing.
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