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Abstract

Transactional Memory(TM) is an optimistic speculative cyro-
nization scheme that provides atomic execution for a regf@ode
marked as a transaction by the programmer. TM avoids marheof t
problems associated with mutual-exclusion-based synctation
and can make writing parallel programs relatively easiesgRams
with critical sections that are not heavily contended béifrefin the
optimistic nature of TM systems. However, for heavily comted
critical sections, performance for TM systems can degradetd
conflicts leading to stalls and expensive rollbacks.

In this paper, we look into the nature of the shared data sl
in conflicts for TM systems. We find that for a certain classpf a
plications, shared-conflicting data is often updated inealjmtable
manner by different transactions. We propose using a vatae p
dictor to capture this predictability for such data struetiand
increase overall concurrency by satisfying loads from éotirfig
transactions with predicted values, instead of stallindghis paper,

we present a possible design and implementation of TM system

with a value predictor to avoid conflicts between concurtests-
actions. Our benchmark results show us that the value podic
can capture this predictable behavior for most benchmarédscan
improve performance of TM programs by minimizing stalls and
rollbacks due to conflicts.

1. Introduction

Current lock-based mutual exclusion schemes are not $eifab
fine-grain synchronization because of the overhead they ten

generate (Kagi et al. 2-4 Jun 1997; Mellor-Crummey and Scott
1991). Transactional Memory (Herlihy and Moss 1993; Rajwar
and Goodman 2002; Hammond et al. 2004; Ananian et al. 2006;
Moore et al. 11-15 Feb. 2006) systems try to avoid some of the

performance problems associated with locking thgnsactional
execution, namely optimistic speculative execution of the critical
section in absence of “conflicting accesses”. Concurrecesses
are said to “conflict” if they are made to the same memory asidre
and at least one of them is a write. If accesses from diffateatids
conflict, all but one thread, abort/stall speculative execuand
restart the critical section. If a transaction reaches te & the
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critical section without encountering any conflicts, it caommit”
its speculative data and turn non-speculative.

For parallel programmers, a transaction is presenteahasb-
straction that provides for atomic execution of a block of code with
atomicity, consistency and durability guarantees'. TM systems also
provide wait-free properties to critical sections, thabiag danger-
ous scenarios like priority inversion, thread-starvataord dead-
locks etc. These scenarios are very difficult to reason ationt
ing parallel programming. The above features of TM systeraken
writing parallel programs relatively easier than locksninost cases
the programmer has to simply identify critical sections ekl
them as transactions.

With TM, the burden of providing atomicity and wait-free pro
erties falls on the system designer. The underlying implaae
tion for a TM system can be either provided by software (Higrli
et al. 2003) using special data structures in memory or bjoous
hardware (Herlihy and Moss 1993; Hammond et al. 2004; Amania
et al. 2006; Moore et al. 11-15 Feb. 2006). In this work, we-con
sider hardware-supported transactional memory (HTM)esyst
only since they incur lower overheads and provide bettefoper
mance than software transactional memory systems.

Performance of TM is best under mild or medium contention
when the performance benefit from speculative executioh wdt
conflicts exceeds the performance loss due to rollback on con
flicts (Bobba et al. 2007; Hammond et al. 2004). For critiead-s
tions that are heavily contended, TM systems can suffeuéety
rollbacks due to conflicts and lead to degraded performahics.
problem only gets worse with increasing number of processor
Past research work has often proposed switching to a caiserv
locking scheme for heavily contended critical sectionseduce
critical section memory traffic (Rajwar and Goodman 2002}his
paper, we consider a different approach for solving thidbfem.

We observe that parallel programs often need to maintain a
queue or a linked-list of elements for various activitiéelschedul-
ing tasks, keeping records and allocating memory to diffepeo-
cesses. Within the Splash suite (Woo et al. 1995), benctenark
like Raytrace, Radiosity, Cholesky are among the few thatais
queue structure for task/memory scheduling. The STAMP kenc
mark suite (Minh et al. 2008) contains many benchmarks that
traverse queues or linked-lists during parallel executiOpera-
tions on such structures mainly involve insertions, sdagctand
deletions of elements. These operations are often difftouftar-
allelize, even if they are carried out on different elemeitis-
cause of the bookkeeping associated with each operatierirlik
crementing/decrementing the shared head or tail poinpetating

1Fundamentally TM does not provide these guarantees, tiepravided
by the underlying system or the programming language. Guinedy
speaking, TM only guarantees atomicity.



the queue size etc. Due to this, concurrent transactiorftictaand
operations can get serialized.

Upon closely observing the shared data involved in bookkeep
ing, we find that it is often updated by each transaction inea pr
dictable manner. In this research, we observe this prdaiittaof
shared conflicting data in various benchmarks and explaédiba
of having a value predictor in memory to learn and predictstia
data that can be used by conflicting transactions to run ialpar
lel. As commits occur, the predictor validates each predistalue
in the order they were predicted and instructs each traiosat
continue or abort. With correct predictions, we can run ipiet
transactions in parallel with very little communicatiomproving
speedup. Wrongly predicted values lead to aborts and eitilie
rollback mechanism already present in TM systems to retitart
critical section.

This research makes the following contributions:

* We present a case for implementing a memory-level value pre-

dictor that can parallelize conflicting transactions forM 3ys-
tem.

* We present a possible design of the value predictor and high-

light the issues that can arise during the design of a TM syste
with the value predictor.

abort or a commit. Standard modifications to the underlyiagdh
ware to support TM are:

1. Special instructions to mark the beginning and the endef t
critical section as a transaction.

2. Anhistory buffer or checkpoint capability to restart thegessor
from the beginning of the transaction.

3. Extra read and write bits in the cache to detect transaatio
read and write accesses. Modifications in the cache coherenc
protocol to detect and resolve conflicts.

4. A buffer to hold multiple versions of transactional data.

Performance of HTM systems often exceeds performance of
lock-based synchronization for many applications wherekyo-
nization contention is not severe and the fine-grained ainfitec-
tion provided by the coherence protocol avoids unnecessamy
flicts. If a transaction can commit without any conflicts, wavé
avoided spinning on the lock and improved concurrency by op-
timistic execution. However, performance of TM system ergf
if transactions incur frequent conflicts which may lead toréh
Aborts are wasteful because they not only waste cyclesgpliack
processor and memory state, they also increase the amotraf-of
fic on the network. Every time a transaction restarts, it wibsi-

« We present a limit study using a queue-based microbenchmark bly reissue requests for all shared lines that it needs astiigrto

to get an idea of the best case and worst case performances.

* We also present benchmark results to show that opportanitie
to exploit predictable values exists and can be used to ivepro
performance over base TM systems.

Our initial results look promising; Overall performance tok
TM system improves with the addition of the value predicwe

get significant speedups ( in most cases over 100%) by using a

value-predictor-based TM model over the base LogTM model. W

the memory system. To minimize the number of aborts, some re-
searchers have proposed back-off schemes to reduce theenofmb
conflicts (Herlihy and Moss 1993; Moore et al. 11-15 Feb. 2006
In this work, we take a different approach. Instead of redgaon-
currency by slowing down retries, we propose to increasewaen
rency by running transactions concurrently with predictatles.

We describe our proposal in the next section.

3. Casefor Value Prediction

observe most of our speedup arises by reducing the number ofwe notice that many parallel scientific applications carsfia data

conflicts and aborts in TM systems. Also, mispredictions raot
very expensive and do not degrade performance significartly
rest of the paper is organized as follows: We discuss traiosesc
in detail in the next section. In section 3 we put forward oase
for having a value predictor. In the next section we presem o
possible design of such an enhanced TM system. Section énises
our initial simulation results. Finally we present our clhusion and
future work.

2. Transactional Memory
Transactional Memory was first proposed by Herlihy et al.r{idg

and Moss 1993) as a lock-free synchronization mechanism sup

ported by hardware. Since then, there have been a numbeo-of pr
posals that revolve around their idea of providing a “tratisaal
memory” abstraction to the programmer supported eitherdog-h
ware or software (Rajwar and Goodman 2002; Rajwar et al. 2005
Hammond et al. 2004; Ananian et al. 2006; Moore et al. 11-1b Fe
2006; Herlihy et al. 2003).

In this work, we look mainly at hardware-supported TM (HTM)
systems since they provide better performance and demasdrle
effort from the programmer compared to STM systems (Rajwar
et al. 2005; Herlihy et al. 2003; Kumar et al. 2006). HTM sys-
tems use hardware to perform the two important functions@i-C
flict Detection and Version Management. Conflict detectpro-
vided by minor modifications to the underlying coherencequol.
Whenever a processor tries to read or update a memory locatio
that has been updated by another processor currently imsatta
tion, the coherence protocol signals a conflict. To manafjerent
versions of transactional data, the hardware must providparate

structure such as a linked list or a queue that performs tashk m
agement, memory management etc. For example, Cholesky and
Raytrace from the SPLASH (Woo et al. 1995) suite of benchsark
maintain a linked list for memory management purposes. ¢adi
ity maintains queues for dynamic task scheduling. In martpege
benchmarks, the individual tasks or threads can executaralp
lel and parallelism is often limited by serialized accesghm data
structure. Operations on these structures are not onlglsed but
also difficult to synchronize at a fine-grain using locks. \iplain
this further with the help of a simple example as shown in Fedu
Note that the data structure used by a real application wbeld
modified version of our example.

Typical members of a queue data structure are the head dnd tai
pointers and the size of the queue (Cormen et al. 2001). Cammo
operations provided by the queue object are inserting nemehts
and deleting elements, typically from the head. Operatmmshe
qgueue are as shown in Figure 1. Both the insert and delet@-oper
tions can potentially manipulate the head and tail poiraeis the
queue size, while inserting and deleting elements that reagi$
tinct. This means that every operation on the queue needs to b
serialized with every other operation to maintain atorgioit par-
allel version of the queue object using transactions is as/shn
Figure 2.

The transactional version avoids conservative locking,peu-
forms no better since within both the operations, insert@eldte,
at least one shared member of the queue object is updatech whi
will lead to conflicts for concurrent transactions leadingtalls or
aborts which reduce concurrency.

Since different processors maybe inserting or deletinigint
elements, which can be done in parallel, the only thing limgipo-

buffer or a log in memory and a mechanism to switch versions on tential parallelism for the insert and delete operatiorthésupdate



Class Queue { enqgeue(e?ement* newglem) dequeue()
int queue_size; if (tail != NULL) if (head == NULL)
element* head; tail->next = newElem; return;

element* tail; else
enqueue(element®);

dequeue();

tail
queue_size++;

head = newElem;
newElem;

elem* temp = head;
head = head->next;
free(temp);
queue_size--;
if (queue_size == 0)
head NULL;
tail NULL;

Figure 1. Example showing shared operations on the Queue

enqueue(element* newElem)

XBEGIN
if (tail != NULL)
tail->next = newElem;
else
head = newElem;
tail = newElem;
queue_size++;
XEND
dequeue()
XBEGIN
if (head == NULL)
return;

elem* temp = head;
head = head->next;
queue_size--;
if (queue_size == 0)
head NULL;
tail NULL;
XEND
free(temp);

Figure2. Enqueue and Dequeue Operations using Transactions

of the shared members of the queue object. To improve stigfabi
for such structures, we look into the nature of shared ojmraithat
create conflicts. We notice that the insert and delete dpesafor

a queue object update the head, tail and size members ofahexsh
gueue object. The head and tail pointers move by a size equal t
the size of element and the queue size increments or decteimen
1. Thus, each operation changes the value of shared dataxsda fi
amount. This behavior can be exploited to improve concuasrelfi
we can predict future values from the insert and delete dipais
and feed those values to concurrently running transactisasan
improve the concurrency of the program.

herence protocol support for value predicted transactiénsther
compelling reason for having a value predictor is that we db n
lose the benefits of TM systems. In absence of conflicts, aans
tions execute normally and commit and turn non-speculativen-
out interference from the value predictor. From initial neicench-
mark results, we observe that we do not lose much performiance
the worst case with many mispredicted values, since moglicen
ing transactions would have stalled or aborted anyway. @lurey
predictor-based TM system simply tries to run transactiorar-
allel when they would have otherwise stalled. We believearitaa
value predictor in the memory system has the potential teec
the performance of any TM system for such applications sinee
break serializing data dependencies between transactions

Also, for such applications on a TM system, with increasing
number of processors, the number of conflicts in the systaohte
increase, thus, TM systems will not provide scalable perforce
for such applications. Our scheme tries to minimize the ichjod
conflicts in such cases and thus, has the potential to priatter
performance. In the next section, we describe a possibligries
such value predictor in detail.

4. Design of theenhanced TM system
4.1 BaselLogTM System

The base multiprocessor system we assume is a shared memory
system using directories to maintain cache coherence gveing
to-point interconnection network. We use the LogTM model-pr
posed by Moore (Moore et al. 11-15 Feb. 2006) et al., built ove

top of the Simics full system simulator (Magnusson et al.2@hd

the GEMS (Martin et al. 2005) memory model, to support transa
tions, as our base TM system over which we develop our value
predictor. Borrowing terminology from Bobba (Bobba et @027)
etal., the LogTM model uses an eager version managemerrhsche
along with early conflict detection. For version managemewery
transaction is provided with a LIFO “log” in memory to savel ol

The above operations on the queue are simplified versions of data that is overwritten by the transaction. Conflicts arected

the insert and delete operations that occur in most apitst If

an application is using a linked-list, it may delete any edatrand
not just the head. In such a case, there may be an extra lobp in t
delete procedure to search for the element to delete ana prer
vious or next shared pointer updates. Even in this case, wenta
prove concurrency because if the elements being operatatdane
distinct, they may update different shared memory pointédrch
may not conflict. A conflict for any shared memory operation no
being predicted will be handled as per the rules of the ugateyl
TM model and may lead to a stall or aborts. However, we believe
that such conflicts will be minimal and value prediction of geri-
alizing members will lead to improved concurrency.

A big incentive of using predicted values to run transaction
in parallel comes from the fact that HTM systems alreadyudel
hardware to enable speculative execution. Thus, the onfifa ex
hardware that is needed is for the value predictor along waith

by the cache coherence protocol and result in conflictingsta-
tion getting a negative-acknowledgment (Nack). Nacks hetain
ownership and force conflicting transactions to retry aterlame.
However, Nacks also introduce the possibility of deadlocks

Deadlocks are avoided by maintaining timestamps (Rajwar an
Goodman 2002) for transactions that are retained duringoart a
and recording nacked transactions during conflicts. Whesch is
received, the timestamps from the conflicting and nackiaggdac-
tions are compared and a cycle is detected if:

* The Nack is from a transaction that has an earlier timestamp.

* The conflicting transaction had previously nacked a tratisac
with an earlier timestamp.

A cycle indicates a potential deadlock and the nacked transa
tion is aborted. In the LogTM model, an abort leads to a ralka
of memory using the log and a processor checkpoint. Upon com-



pleting the rollback, the transaction is restarted. Wheamsaction
reaches the end of the critical section , it commits by erpstia log

of old values and the processor checkpoint. We use the abldve T
model because of two reasons:

* The LogTM model has been provided along with the GEMS
suite and accurately models the timing of transaction atzortl
commits.

* Ituses a Nack-based coherence protocol which is more stippor
ive of a value predictor than a deferral-based scheme (Rajwa
and Goodman 2002). Nacks are visible to memory and can be
used to trigger the value predictor to make a prediction.

4.2

Identifying an address for value prediction is easy; Wheney
directory receives a Nack, it inserts the conflicting adslrego
the value predictor. This means subsequent stores to tlatssl
are captured by the value predictor to generate stride elfviiue
predictor is full, then we can have multiple ways of evictiag
existing entry. We can either remove the oldest entry or titeye
with the least number of accesses. In our experiments, welgim
remove the entries in order because our VP profiling data show
that we never have more simultaneous sharers than the nwhber
VP entries.

We assume a centrally-located memory-level value predicto
that performs the following functions:

Identifying values for predictions

* For addresses identified as predictable, the value predicte
ates entries, intercepts load/store requests to thosessigy
and maintains an ordered history of data values from differe
processors/transactions.

For a Nack to a load request whose address is present in the
value predictor, it tries to provide a predicted value to the
nacked transaction.

The value predictor also performs the important function of
avoiding “mutually dependent” transactions which can lead

a deadlock. This is the main reason the predictor is globdl an
at the memory.

As transactions commit, stores to addresses inside the valu
predictor are committécto memory, in order, and their history
is updated in the value predictor. Any predictions that were
made for those entries are then verified.

In case of a misprediction, the predictor informs the preoes
which in turn aborts the transaction that received the béaeva
and restarts.

Addresses that are not present in the value predictor talgle a
treated normally as in the base LogTM model. Since the value

predictor needs to see all write accesses made to the memory®

location that needs predicted values, we envision that lit v
located near the memory or directory controller, hence wkica
a “memory-level” value predictor.

4.3 Organization of the Memory-level value predictor

Our value predictor consists of a table of entries, whererdrye
corresponds to an address that is conflicting and needscpeddi
values. Each entry, as shown in fig 3b consists of the address,
a set of recent values that were written to the memory lonatio
along with the processors IDs and a set of speculated vafues i
any for this line along with the ID of the cpu that received the
predicted value. The number of recent values to save depmmds
the amount of history desired to make correct predictios.this
research work, our value predictor is stride-based and sodav

21n the LogTM model, on a commit, we discard the old values.

Rollback
support

Ad/Wr bits
R e — —
1

Prediction

Memory Store data Store data Memory
Directory Directory
Predicted Values Predicted Values
eite Value Predictor =~ _
- "t
Add RV I RY I R3V| S| 'svi | 1| svz [P2| sva |ps|sva| pa | Svs | ps | a8

RV — Recent Value ; SV -- Speculated value ; SV1, RV1 are the oldest
P1, P2, P3, P4, P5 — speculated procs in order
AB — Abort Flag

Stride = RV3 —RV2 (®)

Figure 3. Part (a) shows the changes needed to the micro-
architecture to support VP-TM. Part (b) shows the structirene
VP entry.

not save more than 2 most recent written values. For a “camfide
prediction, we can save the last 3 recent stores and predligtifo
the stride is preserved across the 3 stores. The maximumeamumb
of speculated values needed, per entry, is equal to the nuafibe
processors in the system minus 1. However, similar to thédun
pointer directory structure (Chaiken et al. 1991), we canicv
having more than 5 speculated values per entry withoutfsziog
performance. If there are more than 5 sharers at a time, wetain
those transactions.

We also have an abort flag for each entry which is set if any of
sharers that received a predicted value had to abort or ftbeic-
tion was incorrect. This is done to limit the number of misjpce
tions, in case, the stride behavior of the address charfghas.dbort
flag is set, there will be no more predictions made for the esklr
The abort flag is reset on any subsequent store to that address

So far, in all of our experiments, the total number of datagal
predicted, simultaneously, has always been less than 5, Tiw
nvision the number of entries in the value predictor to bedito
around 5 or 10.

4.4 Operation of the Value Predictor

The VP-TM also demands a few changes to the Nack-based co-
herence protocol used by the LogTM model. Figure 5 shows the
protocol actions for the VP-TM system. The sequence of steps
get a predicted value is as follows:

1. If a transaction receives a nack from another transaétioan
address present in the value predictor, the value predides
to generate a prediction.

2. If a prediction was successfully generated, the dirggbooto-
col supplies the requestor load with a predicted value ard th
value predictor will add the cpu, and the value to the spéedla
values list in the entry corresponding to the address.



3. The MSHR entries for the load operation at the caches are owner becomes the new non-speculative owner of the lindnelf t

not cleared. Thus, at the memory level, the load operatitin st
“exists”.

4. The memory system keeps retrying the request until thesown
transaction commits or aborts.

5. All read/write requests coming from other processorsreng
forwarded to the latest speculated owner of the line as atdit
by the value predictor.

6. The transaction with the predicted value can continug¢cte
but it cannot commit its data until the prediction is verifiéal
our scheme, we stall the transaction if it reaches the endhend
predicted data has not been verified yet.

7. Once the owner commits, the retry can get back non-spaaila

data which is then compared with the predicted data and the

processor is informed of the result.
8. If the prediction succeeded, the value is “passed on” hed t

processor that got the predicted value becomes the new owner

of the line. If all predicted values have been verified, a psac

sor can commit a transaction when it reaches the end of the

transaction.
9. If the prediction was wrong, the data value is returnechto t

memory and the processor needs to abort the transaction. The

value predictor also informs the directory to change thtesté
the line to invalid.

The logging-behavior of addresses that are present inkiele t
value predictor is opposite of the LogTM model. Stores teséhe
addresses are not propagated to memory until commit. Thisrie
to ease the design becausettiesl oad val ue predicted by the value
predictor is the last store value for that address that will be seen
at the end of the Nacking transaction and if we update the memory
on with multiple such stores, inside the value predictoriitneed
to know when to use finally use the value. If a transactionivece
predicted values, the VP-TM system also need not log datador
dresses because the predicted value may be incorrect amulids
not be written back to memory during an abort. We implemented
a small buffer of 5 entries, near the transaction log, thahiifies
predictable addresses accessed by the transaction andvinaiata
that was generated by stores to these addresses. We céthehis
“prediction map” as shown in figure 3a. When the transactmmn-c

prediction fails, the line is returned to the directory. Atg point,
the directory line is in Invalid state; however, it has spative
owners. It can choose to abort all speculative owners onittlaw
requests from speculative owners to get the current data fhe
directory and verify it against the prediction made.

T, T2 My 12
K (o | LD X
LD X . T3
1 Pred
/X
Nack Pred X Nack
T~ L T y i
Mo | '
- oy LY§
T Nack Pred Y
— ' i wz | | ‘r =
D T2
L] ‘Beadiock— T
Abort

(a) (b) T3 D

Figure4. Figure showing the various deadlock cases that arise due
to value prediction. X, Y and Z are shared conflicting addzess
Shading indicates load-exclusive accesses within traiosesc

4.5 Dependencies Among Predicted Transactions

If a transaction receives a predicted value it cannot conumii
its prediction is verified, usually by the transaction that macked
its request. Thus, value prediction imposes an orderin@ofroits
among concurrent transactions. This may lead to a deadésgle-
cially if two transactions have received predicted valuesnfone
another and are each waiting for the other to commit. To atrogl

, when a request gets nacked, before generating a predittien
value predictor looks up to see if the nacking processor kias e
got a “future” predicted value from the requesting proced$true,
then one of the processors needs to be aborted becauseisthirw

mits, this map is used to flush store data back to memory. Since will lead to a deadlock. Since the nacking processor hasdyree-

the size of the buffer is small, we do not anticipate that this
slow commits down significantly. Note that the number of iexstr
in this buffer need not be the same as those in the value poedic
The value predictor can be bigger to allow more parallelism.
Value prediction creates an ordering among stores fronediff
ent processors to a memory address. Whenever a transaetion g
a predicted value, it becomes the “speculative owner” oflithe,
even if the prediction has not been verified yet. This meaatsfth
ture load requests or retries for that address from othasgetions,
are forwarded to this processor instead of the original ow@aly
requests coming from the oldest speculative owner are fai®ehto
the original owner for the line. Thus, for an address that imaye
multiple speculative owners, the directory consults thieie/gre-
dictor to get the processor to which the current requesy/maust
be forwarded. Figure 5d shows an example of requests frora mul
tiple speculative owners getting forwarded to their respe®wn-
ers.

ceived a predicted value, we choose to abort it so that atdeasof
the transactions can make forward progress. This is the reagon
why we need a memory-level and a global value predictor. @ein
at the memory enables the value predictor to see all load/sto
guests for all address that have been identified as pretécbing
global enables the predictor to see all processors thatreaieved
predicted values. This information is needed to decide dreh
creating a predicted value for a given processor will lead tiead-
lock.

In this design, it should be noted that we predict values for
integers and pointers in parallel programs. While prediti are
only made for up to 4 bytes of data, to merge the value predicto
with the caches and the TM system and the coherence proteeol,
treat the entire cache line as predicted even though thecpied
was made only for a part of the cache line. This is because the
memory system always maintains coherence for cache lies.siz
This condition implies that within a transaction that gotadicted

The order among speculative owners also matters when non-value for a cache line, a load that tries to access any otharata

speculative data is finally returned to the directory. Theatbry
consults the value predictor to get the processor whosegbeed
data should be verified. This step is important to maintagusa-
tial consistency. In case the prediction succeeds, thisutpitve

that cache line, will get incorrect data. We avoid this scienby
identifying such a load to predicted cache lines and stallintil
the prediction is resolved. In our experiments, we do not &ee
significant slowdown due to such stalling. We can also pad#te
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Figure5. Coherence Protocol Actions with VP-TM
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structure elements, manually, such that they do not end uphen
same cache lin&

Ideally, with the value predictor we would like to have a sce-
nario where one cpu is executing the transaction with neatpted
values and all other transactions are running with predigtdues
in the order determined by the value predictor. If the pridits
turn out to be correct, we have managed to improve the cosccyr
of such a system. However, there are many reasons why a vaue p
dictor may not deliver such a speedup even with predictdidees!
values:

* Not all shared conflicting data is predictable. This meaias, th
while some of the shared values will be predicted, transasti
will still stall or abort due to Nacks for the addresses that a
not present in value predictor.

* Transactions can still abort due to out-of-order predictaf
values for different processors leading to cyclic depenaEn

* An abort of a speculative owner for a memory address can cause

all future speculative owners of the address to mispredidt a
restart. Thus, we may have a “chain reaction” of aborts.

5. Performance Evaluation and Results

In this section, we try to verify our claim that a value predre
based TM can improve concurrency for a TM system. We im-
plement a value predictor on top of LogTM model provided
by Moore (Moore et al. 11-15 Feb. 2006) et al. based on the
GEMS (Martin et al. 2005) suite which is driven by Simics (Mag
nusson et al. 2002) functional simulator. We implement lad t
necessary functionality as described in the previous cedir

the value predictor to enable correct and deadlock-freeigian.
Some of the highlights(caveats) of the design of our valeéliptor

are:

* The value predictor is modeled as a table with 10 entries It i
located near the memory system and is capable of intereeptin
all memory accesses as shown in figure 3b.

as per the coherence protocol.

There is no directory-to-value-predictor latency. Thidlwbt
significantly affect timing of protocol messages. We onlgidv
a few race conditions with this simplification.

For shared conflicting accesses, we always generate exelusi
requests to memory. This is purely a performance decision. F
fairness, we use this feature for all simulations of TM with o

without the value predictor.

memory in the event of a writeback. In our design we simply
stall until the value prediction is verified.

A cache line that has predicted data cannot be written back to

| Unit | Value |
Processor single-issue, in-order, 1GHz
L1 Cache| 16K, 4-way, split,1-cycle hit latency
L2 Cache| 2M, 8-way, unified,10-cycle hit latency
Directory 80-cycle latency
Memory 4GB

Tablel. System Parameters for our simulations

Performance may still not be ideal because there might ber oth
data conflicts that may limit speedup. For ex. conflicts duapgo
dating next pointers of queue elements by concurrent tchioses.
The two versions of the queue microbenchmark help us in wbtai
ing the best and worst case performance numbers for VP-TM.

We compare performance of our VP-TM with the LogTM
model to get an idea of the performance by adding the value pre
dictor. The system parameters are as shown in Table 1.

To demonstrate the potential of VP-TM, we picked up a few
benchmarks from the SPLASH suite (Woo et al. 1995) and the
STAMP suite (Minh et al. 2008) of benchmarks. For the splash
applications, we simply replaced critical sections witlyineand
end transaction primitives. We used Simics “magic” instirts
to for this purpose. These benchmarks have been picked &®mcau
they use a linked data structure within the parallel sectod,
with the TM model, updates to the linked data structure has th
potential of limiting speedup. With VP-TM, we wish to see iew
can improve the performance of these benchmarks. Tablewssho
the benchmarks along with the sizes used for simulationqaap.

To reduce the amount of simulation time for RADIOSITY, we do
not measure all iterations in the parallel section due tai&tion
time concerns.

5.1 Predictions, Accuracy and Speedup

Extra messages added by the value predictor have been timed/Ve show speedup numbers (over sequential execution) and num

ber of aborts/restarts. For the microbenchmark, we alsavghe
accuracy of prediction. Predictions are divided iAttypes:

* Good Predictions Predictions that are were verified to be correct
and can lead to a transaction commit.

* Bad Predictions Predictions that turn out to be incorrect at the
time of verification.

* Aborted Predictions These are predictions that had to be
aborted even before they were verified. Some of the causes of
such aborts might be deadlocks with other transactionstwhic
caused a transaction to be aborted.

Prediction accuracy may not provide all the reasons forquerf

For evaluation purposes, we use a microbenchmark to isolate mance speedup or degradation compared to TM systems. While

the performance benefits or losses from using a value poedict
Processors execute critical sections inside multiple iteqations
for the microbenchmark. To ensure load balancing, we intced
some delay after the critical section is exited by a proceSdwe
amount of delay outside of the critical section is twice tbéagt in-
side the critical section. The microbenchmark perfots/n op-
erations on a shared queue. It is the same as the exampleeoutli
in the section 3. We have 2 different versions of the micraben
mark. The first version performs only insertions while thesal
version randomly inserts or deletes elements from the hé#idh
this microbenchmark, we want to evaluate performance bsrigfi
a scenario where we have serializing members of the queeetobj

3This is a popular technique to avoid false sharing.

correct predictions have the potential to improve concwyemul-

tiple correct predictions on a single transaction can beonady

a single bad/aborted prediction or even an abort which caah te
performance degradation even with highly accurate VP. I8ityj
aborted predictions does not always indicate poor perfooma
since they represent wasted work when the transaction waaud
stalled anyway. In general however, we expect that a speedkrp

TM would be due to reduced number of aborts and a reasonably
accurate predictor.

To get a better idea of how predictions affect performance, w
add a feature to our value predictor to control the max nunolfer
simultaneous predictions on a single entry. While incrdamenber
of predictions are capable of increasing concurrency, tayalso
lead to cyclic dependencies as discussed in section 4.1.aWe v



[ Benchmark [ Suite | Input | Units Measured]  Serializing Object |
RAYTRACE | SPLASH car parallel section| memory manager lis
RADIOSITY | SPLASH batch 1 task task-queue

Intruder STAMP -al10 -14 -n1024 -s1 parallel section packet queue
Labyrinth STAMP | random-x24-y24-z3-n1024 parallel section pathvector list

Table 2. Benchmark Parameters

the max number of predictions from 1 to 5 to see if increased
predictions always result in better performance. In ourréguwe
mention the different cases by the maximum number of priedist
allowed in each case.

To understand predictability within benchmarks better,als®
conduct experiments where we manually identified some ofdhe
ues that can serialize transactions. We disable the dyrechdiition
of entries inside value predictor and, instead, using mangitcuc-
tions in Simics, we pass these addresses to the value medié&
then compare the results with the standard dynamic addifiba
purpose of comparing with this software approach is to fintifou
the queue structure is the only performance bottleneckeragpli-
cation and whether other conflicts can be easily predicted.

5.2 Performance Analysis

benchmark that utilizes such a structure to see if speedingct
cesses around the queue can lead to overall performancevepr
ment. For Raytrace and Radiosity benchmarks, we only raarexp
iments up to 3 predicted sharers because of simulation tone c
cerns.

For the benchmarks we studied, VP-TM performs better than
the Log TM system for all cases even as the percentage of good
predictions are as low as 13% in Radiosity and Intruder beracks
to as high as almost 70% in Labyrinth benchmark from the STAMP
suite (Minh et al. 2008). Figure 7 shows speedup numbersét®
processors case for the LogTM model and the VP-TM model with
1,2,3 and 5 max-predicted-sharers per address. Some {wedic
get aborted before they can be verified. Hence, the totaleperc
of good and bad predictions does not add up to 100. Overall,
the 2 max-predicted-sharers case is the best performesseaib

Figures 6a and b show the speedups for 1, 2, 3 and 5 predictionsbenchmarks. As shown in the figure, VP-TM improves the speedu

per address (y-axis on the left). It also shows percentagetaf
transactions that restarted for 1 of the VP cAsawd the LogTM
model, for 4, 8 and 16 processors(y-axis on the right). Thésdo
bar in the graph indicates prediction accuracy for the 2 iptiEnhs
per address case using the right y-axis. As shown in figunas, o
VP-TM system has improved performance of the microbenckmar
for both the cases. Looking at figure 6a, we can see that the val
predictor can easily capture the predictability for thisedstructure
and provide good performance by reducing restarts. Howeven
for the random insert/delete microbenchmark, our VP-TMeays
performs better, albeit not as good as the 1st case, thanase b
LogTM system even with a low prediction accuracy as seen from
figure 6b. We attribute this performance benefit to the impdov
concurrency with the VP-TM system that can lead to a reduced
number of aborts/restarts and thus reducing memory traffie
reduction in the prediction accuracy is due to the increaseaber

of aborts in the system that disturbs the stride of the vatadiptor.
With each restart or mis-prediction, the value predictos ha
recalculate a stride while the abort flag limits further pegidns
until a transaction commits. This reduces the performarcefits
that can be obtained.

For the different VP cases, we find that increasing the nurober
predicted sharers leads to better performance for a snsitem.
But for 16 processors we find that limiting the number of pcéeti
sharers works best. For a 16 processor system, the bestrpérfp
VP cases are when the number of predicted sharers are litoited
or 3. This is because with increased number of sharers weaan h
a cascade of mispredictichshat get resolved in order, reducing
concurrency and degrading performance in such a case. Bas a
means that we can fix the number of speculated value entrieswi
a single value predictor entry to around 3 to 5 and still geidyo
performance.

5.3 Application benchmark results

Now that we know that the value predictor works on this datacst
ture, the next step is to evaluate the performance for adcimsal

42 predicted sharers per address in our case, since it is #igegorming.

5The abort flag in the VP per entry is specifically used to avaidhsa
scenario.

for all benchmarks in most cases over 100%. With LabyrintR; V
TM improves the speedup up to 11 times compared to the base
LogTM case. The speedup numbers can be explained by looking a
the transactional characteristics of these benchmarks fable 8.

It can be seen that for the LogTM mode with no predictions,
the number of Negative acknowledgments (Nacks) and abmsts a
high leading to poor performance. VP-TM succesfully masage
convert some of the Nacks to concurrent execution leadibgtier
performance.

The coverage column indicates the percentage of conflieitng
cesses that were successfully predicted. As we can seeihtbyr
has good coverage as well as high prediction accuracy which e
plains it stellar performance. Intruder, on the other hdva poor
coverage and low prediction accuracy which leads to podoper
mance. The benchmarks Raytrace and Radiosity have lowampeer
and accuracy, however, even that is sufficient to improveceon
rency and reduce Nacks and Aborts for those cases. Perfoeman
is good also because Radiosity and Raytrace are not asdtemsa
intensive as the other two benchmarks from the STAMP suite.

The performance of all benchmarks with VP-TM is satisfac-
tory except for the Intruder benchmark. The performancerawg-
ment of VP-TM over TM for Intruder is only 10 to 15%. We know
that Intruder uses a queue-based structure for the incopanget
stream. To identify the predictability of this structure fbis bench-
mark, we manually locate predictable members of this quaue-s
ture, namely the head, tail and the size, in this benchmadkuae
magic instructions as a way to add these members to the value
predictor during program initialization. We also switch tfe dy-
namic addition of entries at Nacks to the value predictor.cdfm-
pare this static approach to the usual case for VP.

The results are as shown in figure 9. From the results we see
that for some benchmarks, the dynamic addition of entriethe¢o
value predictor provides better performance. With Labyrirwe
see that there is no performance difference in the statigioamhic
cases which means the only conflicting addresses are thaisaréh
present in the queue/list structure which were identifiechuadly
by the static scheme. That also explains why VP-TM performs s
much better for this benchmark. With Intruder, the dynamase
performs worse than the static case. We believe the reasahigo
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Figure7. Speedup Results for 16 processors with different max-ptedisharers

degradation is the addition of certain conflicting addredsethe
value predictor in the dynamic case, that are not predietabid
lead to frequent mis-predictions. We noticed that with ttedic
case, the total number of predicted addresses decreasttt par-
centage of good predictions improved compared to the dymami systems in spite of the increased hardware requiremergs, Aith

case leading to better performance. We know that manuatiiden
fication of shared conflicting addresses cannot be expected f

parallel programmers in all cases, however, we show thabines
cases, with manual identification, we can further improve fibr-

formance of VP-TM.

5.4 Rationale, Complexity and Usefulness of VP-TM

From the results section, we observe that a TM system witleval

the value predictor and the improved concurrency at diffep@ints
during parallel execution. This also means that bad andtetbor
predictions do not affect performance of TM severely. Thisge
points are motivation to include the value predictor as pfHTM

the advent of CMP architectures, parallel programming eeted
to be used frequently. While TM makes writing parallel pragis
easier, with increasing number of processors, the TM maatehat
be expected to scale up. TM relies on optimistic speculatke
cution, something which is not a safe bet with increasing mem
of processors. With value prediction in TM, we can not only im
prove concurrency, but we also reduce the number of abdwas, t
can reduce memory traffic over the system bus, further impgpv

prediction outperforms a Log-based TM system for almost all Performance.

benchmarks even with low prediction accuracy. We believe th
main reason for this is the reduction in the number of aborth w

We do not expect VP-TM to benefit every application that is
expected to run on an HTM system. For some applications, like



Total predns | % Good %Bad Addresses
CPUS TXNS | Commits | ABORTS | NACKS | & coverage | Predictions | Predictions | predicted

Labyrinth 16 | 15926 2048 13878 | 52561 0 0 0
16 2266 2050 216 1021 | 698 | 99% 69.77 3.1519 3

Intruder 16 4635 1720 2915 7062 0 0 0
16 2027 1720 307 3343 | 444 | 40% 27.93 1.8018 17

Radiosity 16 | 10026 2048 7978 | 41809 0 0 0
16 2494 2048 446 19032 | 2928 | 45% 13.35 31.182 5

Raytrace 16 | 123039 44736 78300 | 139494 0 0 0
16 | 55392 44260 11132 14233 | 1502 | 50% 15.65 14.78 6

Figure 8. Table Showing transactional characteristics of applicattenchmarks for LogTM and VP-TM for each benchmark. The VP

numbers are for the Max 2 predicted sharers.
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Figure9. Static vs. Dynamic Identification of predictable values

SPECJBB 2000 (spe), TM has the potential to scale to a lange nu
ber of processors. However, for many other applicationseeially
the queue-based applications that we have discussed, Tivbtcan
provide any benefit over standard lock-based approaches. &
plications can be found be found in most standard paralletive
mark suites which means they do form an important set of appli
cations that are expected to run on CMPs. For such applitatio
VP-TM can be used to provide improved performance.

6. Related Work

Although similar work has been performed for TLS (Cintra and
Torrellas 2002; Steffan et al. 2002), there is no researctk Wiat
performs value prediction to improve concurrency of trantismal
memory programs. Dependence-aware transactional merRary (
madan et al. 2009) is the closest to our work. In their workyth
forward data within transactions as it is produced. Althotigey
do not need a value predictor, multiple writes to a value el |
to restarts. They also demand significant changes to theeote
protocol compared to VP-TM.

7. Conclusion and Future Work

Transactional Memory has been put forth as a scheme to iraprov
performance of parallel programs, mainly database apits
With this paper, we try to put forth a case for using a valueljmter

that can extend the concurrency of transactions for a cedass

of scientific applications. We find that the simple stridesdxhvalue
predictor can boost the performance of a TM system even with a
low prediction accuracy. With increasing number of abosts,still
manage to see speedups up to 16 processors.

Future work for this paper to evaluate back off techniques to
improve speedup in presence or multiple aborts with inénggs
number of processors and control the number of predictioadem
to reduce the number of aborted predictions. We would ale® li
to implement a way to identify predictable addresses in\ard
without programmer intervention.
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