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Abstract
Transactional Memory(TM) is an optimistic speculative synchro-
nization scheme that provides atomic execution for a regionof code
marked as a transaction by the programmer. TM avoids many of the
problems associated with mutual-exclusion-based synchronization
and can make writing parallel programs relatively easier. Programs
with critical sections that are not heavily contended benefit from the
optimistic nature of TM systems. However, for heavily contended
critical sections, performance for TM systems can degrade due to
conflicts leading to stalls and expensive rollbacks.

In this paper, we look into the nature of the shared data involved
in conflicts for TM systems. We find that for a certain class of ap-
plications, shared-conflicting data is often updated in a predictable
manner by different transactions. We propose using a value pre-
dictor to capture this predictability for such data structures and
increase overall concurrency by satisfying loads from conflicting
transactions with predicted values, instead of stalling. In this paper,
we present a possible design and implementation of TM system
with a value predictor to avoid conflicts between concurrenttrans-
actions. Our benchmark results show us that the value predictor
can capture this predictable behavior for most benchmarks and can
improve performance of TM programs by minimizing stalls and
rollbacks due to conflicts.

1. Introduction
Current lock-based mutual exclusion schemes are not suitable for
fine-grain synchronization because of the overhead they tend to
generate (Kagi et al. 2-4 Jun 1997; Mellor-Crummey and Scott
1991). Transactional Memory (Herlihy and Moss 1993; Rajwar
and Goodman 2002; Hammond et al. 2004; Ananian et al. 2006;
Moore et al. 11-15 Feb. 2006) systems try to avoid some of the
performance problems associated with locking bytransactional
execution, namely optimistic speculative execution of the critical
section in absence of “conflicting accesses”. Concurrent accesses
are said to “conflict” if they are made to the same memory address
and at least one of them is a write. If accesses from differentthreads
conflict, all but one thread, abort/stall speculative execution and
restart the critical section. If a transaction reaches the end of the
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critical section without encountering any conflicts, it can“commit”
its speculative data and turn non-speculative.

For parallel programmers, a transaction is presented asan ab-
straction that provides for atomic execution of a block of code with
atomicity, consistency and durability guarantees1. TM systems also
provide wait-free properties to critical sections, that avoids danger-
ous scenarios like priority inversion, thread-starvationand dead-
locks etc. These scenarios are very difficult to reason aboutdur-
ing parallel programming. The above features of TM systems make
writing parallel programs relatively easier than locks. Inmost cases
the programmer has to simply identify critical sections andlabel
them as transactions.

With TM, the burden of providing atomicity and wait-free prop-
erties falls on the system designer. The underlying implementa-
tion for a TM system can be either provided by software (Herlihy
et al. 2003) using special data structures in memory or by custom
hardware (Herlihy and Moss 1993; Hammond et al. 2004; Ananian
et al. 2006; Moore et al. 11-15 Feb. 2006). In this work, we con-
sider hardware-supported transactional memory (HTM) systems
only since they incur lower overheads and provide better perfor-
mance than software transactional memory systems.

Performance of TM is best under mild or medium contention
when the performance benefit from speculative execution with no
conflicts exceeds the performance loss due to rollback on con-
flicts (Bobba et al. 2007; Hammond et al. 2004). For critical sec-
tions that are heavily contended, TM systems can suffer frequent
rollbacks due to conflicts and lead to degraded performance.This
problem only gets worse with increasing number of processors.
Past research work has often proposed switching to a conservative
locking scheme for heavily contended critical sections to reduce
critical section memory traffic (Rajwar and Goodman 2002). In this
paper, we consider a different approach for solving this problem.

We observe that parallel programs often need to maintain a
queue or a linked-list of elements for various activities like schedul-
ing tasks, keeping records and allocating memory to different pro-
cesses. Within the Splash suite (Woo et al. 1995), benchmarks
like Raytrace, Radiosity, Cholesky are among the few that use a
queue structure for task/memory scheduling. The STAMP bench-
mark suite (Minh et al. 2008) contains many benchmarks that
traverse queues or linked-lists during parallel execution. Opera-
tions on such structures mainly involve insertions, searching and
deletions of elements. These operations are often difficultto par-
allelize, even if they are carried out on different elements, be-
cause of the bookkeeping associated with each operation like in-
crementing/decrementing the shared head or tail pointer, updating

1 Fundamentally TM does not provide these guarantees, they are provided
by the underlying system or the programming language. Conceptually
speaking, TM only guarantees atomicity.



the queue size etc. Due to this, concurrent transactions conflict and
operations can get serialized.

Upon closely observing the shared data involved in bookkeep-
ing, we find that it is often updated by each transaction in a pre-
dictable manner. In this research, we observe this predictability of
shared conflicting data in various benchmarks and explore the idea
of having a value predictor in memory to learn and predict shared
data that can be used by conflicting transactions to run in paral-
lel. As commits occur, the predictor validates each predicted value
in the order they were predicted and instructs each transaction to
continue or abort. With correct predictions, we can run multiple
transactions in parallel with very little communication, improving
speedup. Wrongly predicted values lead to aborts and utilize the
rollback mechanism already present in TM systems to restartthe
critical section.

This research makes the following contributions:

• We present a case for implementing a memory-level value pre-
dictor that can parallelize conflicting transactions for a TM sys-
tem.

• We present a possible design of the value predictor and high-
light the issues that can arise during the design of a TM system
with the value predictor.

• We present a limit study using a queue-based microbenchmark
to get an idea of the best case and worst case performances.

• We also present benchmark results to show that opportunities
to exploit predictable values exists and can be used to improve
performance over base TM systems.

Our initial results look promising; Overall performance ofthe
TM system improves with the addition of the value predictor.We
get significant speedups ( in most cases over 100%) by using a
value-predictor-based TM model over the base LogTM model. We
observe most of our speedup arises by reducing the number of
conflicts and aborts in TM systems. Also, mispredictions arenot
very expensive and do not degrade performance significantly. The
rest of the paper is organized as follows: We discuss transactions
in detail in the next section. In section 3 we put forward our case
for having a value predictor. In the next section we present one
possible design of such an enhanced TM system. Section 5 presents
our initial simulation results. Finally we present our conclusion and
future work.

2. Transactional Memory
Transactional Memory was first proposed by Herlihy et al. (Herlihy
and Moss 1993) as a lock-free synchronization mechanism sup-
ported by hardware. Since then, there have been a number of pro-
posals that revolve around their idea of providing a “transactional
memory” abstraction to the programmer supported either by hard-
ware or software (Rajwar and Goodman 2002; Rajwar et al. 2005;
Hammond et al. 2004; Ananian et al. 2006; Moore et al. 11-15 Feb.
2006; Herlihy et al. 2003).

In this work, we look mainly at hardware-supported TM (HTM)
systems since they provide better performance and demand lesser
effort from the programmer compared to STM systems (Rajwar
et al. 2005; Herlihy et al. 2003; Kumar et al. 2006). HTM sys-
tems use hardware to perform the two important functions of Con-
flict Detection and Version Management. Conflict detection is pro-
vided by minor modifications to the underlying coherence protocol.
Whenever a processor tries to read or update a memory location
that has been updated by another processor currently in a transac-
tion, the coherence protocol signals a conflict. To manage different
versions of transactional data, the hardware must provide aseparate
buffer or a log in memory and a mechanism to switch versions on

abort or a commit. Standard modifications to the underlying hard-
ware to support TM are:

1. Special instructions to mark the beginning and the end of the
critical section as a transaction.

2. A history buffer or checkpoint capability to restart the processor
from the beginning of the transaction.

3. Extra read and write bits in the cache to detect transactional
read and write accesses. Modifications in the cache coherence
protocol to detect and resolve conflicts.

4. A buffer to hold multiple versions of transactional data.

Performance of HTM systems often exceeds performance of
lock-based synchronization for many applications where synchro-
nization contention is not severe and the fine-grained conflict detec-
tion provided by the coherence protocol avoids unnecessarycon-
flicts. If a transaction can commit without any conflicts, we have
avoided spinning on the lock and improved concurrency by op-
timistic execution. However, performance of TM system suffers
if transactions incur frequent conflicts which may lead to aborts.
Aborts are wasteful because they not only waste cycles rolling back
processor and memory state, they also increase the amount oftraf-
fic on the network. Every time a transaction restarts, it willpossi-
bly reissue requests for all shared lines that it needs ownership, to
the memory system. To minimize the number of aborts, some re-
searchers have proposed back-off schemes to reduce the number of
conflicts (Herlihy and Moss 1993; Moore et al. 11-15 Feb. 2006).
In this work, we take a different approach. Instead of reducing con-
currency by slowing down retries, we propose to increase concur-
rency by running transactions concurrently with predictedvalues.
We describe our proposal in the next section.

3. Case for Value Prediction
We notice that many parallel scientific applications consist of a data
structure such as a linked list or a queue that performs task man-
agement, memory management etc. For example, Cholesky and
Raytrace from the SPLASH (Woo et al. 1995) suite of benchmarks
maintain a linked list for memory management purposes. Radios-
ity maintains queues for dynamic task scheduling. In many ofthese
benchmarks, the individual tasks or threads can execute in paral-
lel and parallelism is often limited by serialized access tothe data
structure. Operations on these structures are not only serialized but
also difficult to synchronize at a fine-grain using locks. We explain
this further with the help of a simple example as shown in Figure 1.
Note that the data structure used by a real application wouldbe a
modified version of our example.

Typical members of a queue data structure are the head and tail
pointers and the size of the queue (Cormen et al. 2001). Common
operations provided by the queue object are inserting new elements
and deleting elements, typically from the head. Operationson the
queue are as shown in Figure 1. Both the insert and delete opera-
tions can potentially manipulate the head and tail pointersand the
queue size, while inserting and deleting elements that may be dis-
tinct. This means that every operation on the queue needs to be
serialized with every other operation to maintain atomicity. A par-
allel version of the queue object using transactions is as shown in
Figure 2.

The transactional version avoids conservative locking, but per-
forms no better since within both the operations, insert anddelete,
at least one shared member of the queue object is updated, which
will lead to conflicts for concurrent transactions leading to stalls or
aborts which reduce concurrency.

Since different processors maybe inserting or deleting different
elements, which can be done in parallel, the only thing limiting po-
tential parallelism for the insert and delete operations isthe update



Class Queue {              
    int queue_size;
    element* head;
    element* tail;
    enqueue(element*);
    dequeue();
}

enqueue(element* newElem)
   if (tail != NULL)

tail->next = newElem;
   else 
      head = newElem;
   tail = newElem;
   queue_size++;

dequeue()
   if (head == NULL)

return;
   elem* temp = head;
   head =  head->next;
   free(temp);
   queue_size--;
   if (queue_size == 0)
      head = NULL;

tail = NULL;

Figure 1. Example showing shared operations on the Queue

enqueue(element* newElem)
 XBEGIN
   if (tail != NULL)

tail->next = newElem;
   else 
      head = newElem;
   tail = newElem;
   queue_size++;
  XEND

dequeue()
 XBEGIN
   if (head == NULL)

return;
   elem* temp = head;
   head =  head->next;
   queue_size--;
   if (queue_size == 0)
      head = NULL;

tail = NULL;
 XEND
 free(temp); 

Figure 2. Enqueue and Dequeue Operations using Transactions

of the shared members of the queue object. To improve scalability
for such structures, we look into the nature of shared operations that
create conflicts. We notice that the insert and delete operations for
a queue object update the head, tail and size members of the shared
queue object. The head and tail pointers move by a size equal to
the size of element and the queue size increments or decrements by
1. Thus, each operation changes the value of shared data by a fixed
amount. This behavior can be exploited to improve concurrency. If
we can predict future values from the insert and delete operations
and feed those values to concurrently running transactions, we can
improve the concurrency of the program.

The above operations on the queue are simplified versions of
the insert and delete operations that occur in most applications. If
an application is using a linked-list, it may delete any element and
not just the head. In such a case, there may be an extra loop in the
delete procedure to search for the element to delete and extra pre-
vious or next shared pointer updates. Even in this case, we can im-
prove concurrency because if the elements being operated upon are
distinct, they may update different shared memory pointerswhich
may not conflict. A conflict for any shared memory operation not
being predicted will be handled as per the rules of the underlying
TM model and may lead to a stall or aborts. However, we believe
that such conflicts will be minimal and value prediction of the seri-
alizing members will lead to improved concurrency.

A big incentive of using predicted values to run transactions
in parallel comes from the fact that HTM systems already include
hardware to enable speculative execution. Thus, the only extra
hardware that is needed is for the value predictor along withco-

herence protocol support for value predicted transactions. Another
compelling reason for having a value predictor is that we do not
lose the benefits of TM systems. In absence of conflicts, transac-
tions execute normally and commit and turn non-speculative, with-
out interference from the value predictor. From initial microbench-
mark results, we observe that we do not lose much performancein
the worst case with many mispredicted values, since most conflict-
ing transactions would have stalled or aborted anyway. Our value-
predictor-based TM system simply tries to run transactionsin par-
allel when they would have otherwise stalled. We believe having a
value predictor in the memory system has the potential to exceed
the performance of any TM system for such applications sincewe
break serializing data dependencies between transactions.

Also, for such applications on a TM system, with increasing
number of processors, the number of conflicts in the system tend to
increase, thus, TM systems will not provide scalable performance
for such applications. Our scheme tries to minimize the impact of
conflicts in such cases and thus, has the potential to providebetter
performance. In the next section, we describe a possible design of
such value predictor in detail.

4. Design of the enhanced TM system
4.1 Base LogTM System

The base multiprocessor system we assume is a shared memory
system using directories to maintain cache coherence over apoint-
to-point interconnection network. We use the LogTM model pro-
posed by Moore (Moore et al. 11-15 Feb. 2006) et al., built over on
top of the Simics full system simulator (Magnusson et al. 2002) and
the GEMS (Martin et al. 2005) memory model, to support transac-
tions, as our base TM system over which we develop our value
predictor. Borrowing terminology from Bobba (Bobba et al. 2007)
et al., the LogTM model uses an eager version management scheme
along with early conflict detection. For version management, every
transaction is provided with a LIFO “log” in memory to save old
data that is overwritten by the transaction. Conflicts are detected
by the cache coherence protocol and result in conflicting transac-
tion getting a negative-acknowledgment (Nack). Nacks helpretain
ownership and force conflicting transactions to retry at a later time.
However, Nacks also introduce the possibility of deadlocks.

Deadlocks are avoided by maintaining timestamps (Rajwar and
Goodman 2002) for transactions that are retained during an abort
and recording nacked transactions during conflicts. When a nack is
received, the timestamps from the conflicting and nacking transac-
tions are compared and a cycle is detected if:

• The Nack is from a transaction that has an earlier timestamp.

• The conflicting transaction had previously nacked a transaction
with an earlier timestamp.

A cycle indicates a potential deadlock and the nacked transac-
tion is aborted. In the LogTM model, an abort leads to a rollback
of memory using the log and a processor checkpoint. Upon com-



pleting the rollback, the transaction is restarted. When a transaction
reaches the end of the critical section , it commits by erasing the log
of old values and the processor checkpoint. We use the above TM
model because of two reasons:

• The LogTM model has been provided along with the GEMS
suite and accurately models the timing of transaction aborts and
commits.

• It uses a Nack-based coherence protocol which is more support-
ive of a value predictor than a deferral-based scheme (Rajwar
and Goodman 2002). Nacks are visible to memory and can be
used to trigger the value predictor to make a prediction.

4.2 Identifying values for predictions

Identifying an address for value prediction is easy; Whenever a
directory receives a Nack, it inserts the conflicting address into
the value predictor. This means subsequent stores to that address
are captured by the value predictor to generate stride. If the value
predictor is full, then we can have multiple ways of evictingan
existing entry. We can either remove the oldest entry or the entry
with the least number of accesses. In our experiments, we simply
remove the entries in order because our VP profiling data shows
that we never have more simultaneous sharers than the numberof
VP entries.

We assume a centrally-located memory-level value predictor
that performs the following functions:

• For addresses identified as predictable, the value predictor cre-
ates entries, intercepts load/store requests to those addresses
and maintains an ordered history of data values from different
processors/transactions.

• For a Nack to a load request whose address is present in the
value predictor, it tries to provide a predicted value to the
nacked transaction.

• The value predictor also performs the important function of
avoiding “mutually dependent” transactions which can leadto
a deadlock. This is the main reason the predictor is global and
at the memory.

• As transactions commit, stores to addresses inside the value
predictor are committed2 to memory, in order, and their history
is updated in the value predictor. Any predictions that were
made for those entries are then verified.

• In case of a misprediction, the predictor informs the processor,
which in turn aborts the transaction that received the bad value
and restarts.

Addresses that are not present in the value predictor table are
treated normally as in the base LogTM model. Since the value
predictor needs to see all write accesses made to the memory
location that needs predicted values, we envision that it will be
located near the memory or directory controller, hence we call it
a “memory-level” value predictor.

4.3 Organization of the Memory-level value predictor

Our value predictor consists of a table of entries, where an entry
corresponds to an address that is conflicting and needs predicted
values. Each entry, as shown in fig 3b consists of the address,
a set of recent values that were written to the memory location
along with the processors IDs and a set of speculated values if
any for this line along with the ID of the cpu that received the
predicted value. The number of recent values to save dependson
the amount of history desired to make correct predictions. For this
research work, our value predictor is stride-based and so, we do

2 In the LogTM model, on a commit, we discard the old values.
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not save more than 2 most recent written values. For a “confident”
prediction, we can save the last 3 recent stores and predict only if
the stride is preserved across the 3 stores. The maximum number
of speculated values needed, per entry, is equal to the number of
processors in the system minus 1. However, similar to the limited
pointer directory structure (Chaiken et al. 1991), we can avoid
having more than 5 speculated values per entry without sacrificing
performance. If there are more than 5 sharers at a time, we canstall
those transactions.

We also have an abort flag for each entry which is set if any of
sharers that received a predicted value had to abort or if thepredic-
tion was incorrect. This is done to limit the number of mispredic-
tions, in case, the stride behavior of the address changes. If the abort
flag is set, there will be no more predictions made for the address.
The abort flag is reset on any subsequent store to that address.

So far, in all of our experiments, the total number of data values
predicted, simultaneously, has always been less than 5. Thus, we
envision the number of entries in the value predictor to be fixed to
around 5 or 10.

4.4 Operation of the Value Predictor

The VP-TM also demands a few changes to the Nack-based co-
herence protocol used by the LogTM model. Figure 5 shows the
protocol actions for the VP-TM system. The sequence of stepsto
get a predicted value is as follows:

1. If a transaction receives a nack from another transactionfor an
address present in the value predictor, the value predictortries
to generate a prediction.

2. If a prediction was successfully generated, the directory proto-
col supplies the requestor load with a predicted value and the
value predictor will add the cpu, and the value to the speculated
values list in the entry corresponding to the address.



3. The MSHR entries for the load operation at the caches are
not cleared. Thus, at the memory level, the load operation still
“exists”.

4. The memory system keeps retrying the request until the owner
transaction commits or aborts.

5. All read/write requests coming from other processors arenow
forwarded to the latest speculated owner of the line as indicated
by the value predictor.

6. The transaction with the predicted value can continue to execute
but it cannot commit its data until the prediction is verified. In
our scheme, we stall the transaction if it reaches the end andthe
predicted data has not been verified yet.

7. Once the owner commits, the retry can get back non-speculative
data which is then compared with the predicted data and the
processor is informed of the result.

8. If the prediction succeeded, the value is “passed on” and the
processor that got the predicted value becomes the new owner
of the line. If all predicted values have been verified, a proces-
sor can commit a transaction when it reaches the end of the
transaction.

9. If the prediction was wrong, the data value is returned to the
memory and the processor needs to abort the transaction. The
value predictor also informs the directory to change the state of
the line to invalid.

The logging-behavior of addresses that are present inside the
value predictor is opposite of the LogTM model. Stores to these
addresses are not propagated to memory until commit. This isdone
to ease the design because thethe load value predicted by the value
predictor is the last store value for that address that will be seen
at the end of the Nacking transaction and if we update the memory
on with multiple such stores, inside the value predictor, itwill need
to know when to use finally use the value. If a transaction received
predicted values, the VP-TM system also need not log data forad-
dresses because the predicted value may be incorrect and it should
not be written back to memory during an abort. We implemented
a small buffer of 5 entries, near the transaction log, that identifies
predictable addresses accessed by the transaction and has new data
that was generated by stores to these addresses. We call thisthe
“prediction map” as shown in figure 3a. When the transaction com-
mits, this map is used to flush store data back to memory. Since
the size of the buffer is small, we do not anticipate that thiswill
slow commits down significantly. Note that the number of entries
in this buffer need not be the same as those in the value predictor.
The value predictor can be bigger to allow more parallelism.

Value prediction creates an ordering among stores from differ-
ent processors to a memory address. Whenever a transaction gets
a predicted value, it becomes the “speculative owner” of theline,
even if the prediction has not been verified yet. This means that fu-
ture load requests or retries for that address from other transactions,
are forwarded to this processor instead of the original owner. Only
requests coming from the oldest speculative owner are forwarded to
the original owner for the line. Thus, for an address that mayhave
multiple speculative owners, the directory consults the value pre-
dictor to get the processor to which the current request/retry must
be forwarded. Figure 5d shows an example of requests from mul-
tiple speculative owners getting forwarded to their respective own-
ers.

The order among speculative owners also matters when non-
speculative data is finally returned to the directory. The directory
consults the value predictor to get the processor whose predicted
data should be verified. This step is important to maintain sequen-
tial consistency. In case the prediction succeeds, this speculative

owner becomes the new non-speculative owner of the line. If the
prediction fails, the line is returned to the directory. At this point,
the directory line is in Invalid state; however, it has speculative
owners. It can choose to abort all speculative owners or it can allow
requests from speculative owners to get the current data from the
directory and verify it against the prediction made.
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Figure 4. Figure showing the various deadlock cases that arise due
to value prediction. X, Y and Z are shared conflicting addresses.
Shading indicates load-exclusive accesses within transactions.

4.5 Dependencies Among Predicted Transactions

If a transaction receives a predicted value it cannot commituntil
its prediction is verified, usually by the transaction that had nacked
its request. Thus, value prediction imposes an ordering of commits
among concurrent transactions. This may lead to a deadlock,espe-
cially if two transactions have received predicted values from one
another and are each waiting for the other to commit. To avoidthis
, when a request gets nacked, before generating a prediction, the
value predictor looks up to see if the nacking processor has ever
got a “future” predicted value from the requesting processor. If true,
then one of the processors needs to be aborted because otherwise it
will lead to a deadlock. Since the nacking processor has already re-
ceived a predicted value, we choose to abort it so that at least one of
the transactions can make forward progress. This is the mainreason
why we need a memory-level and a global value predictor. Being
at the memory enables the value predictor to see all load/store re-
quests for all address that have been identified as predictable. Being
global enables the predictor to see all processors that haverecieved
predicted values. This information is needed to decide whether a
creating a predicted value for a given processor will lead toa dead-
lock.

In this design, it should be noted that we predict values for
integers and pointers in parallel programs. While predictions are
only made for up to 4 bytes of data, to merge the value predictor
with the caches and the TM system and the coherence protocol,we
treat the entire cache line as predicted even though the prediction
was made only for a part of the cache line. This is because the
memory system always maintains coherence for cache line sizes.
This condition implies that within a transaction that got a predicted
value for a cache line, a load that tries to access any other data on
that cache line, will get incorrect data. We avoid this scenario by
identifying such a load to predicted cache lines and stalling until
the prediction is resolved. In our experiments, we do not seea
significant slowdown due to such stalling. We can also pad thedata
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structure elements, manually, such that they do not end up onthe
same cache line3.

Ideally, with the value predictor we would like to have a sce-
nario where one cpu is executing the transaction with non-predicted
values and all other transactions are running with predicted values
in the order determined by the value predictor. If the predictions
turn out to be correct, we have managed to improve the concurrency
of such a system. However, there are many reasons why a value pre-
dictor may not deliver such a speedup even with predictable shared
values:

• Not all shared conflicting data is predictable. This means that,
while some of the shared values will be predicted, transactions
will still stall or abort due to Nacks for the addresses that are
not present in value predictor.

• Transactions can still abort due to out-of-order prediction of
values for different processors leading to cyclic dependencies.

• An abort of a speculative owner for a memory address can cause
all future speculative owners of the address to mispredict and
restart. Thus, we may have a “chain reaction” of aborts.

5. Performance Evaluation and Results
In this section, we try to verify our claim that a value predictor-
based TM can improve concurrency for a TM system. We im-
plement a value predictor on top of LogTM model provided
by Moore (Moore et al. 11-15 Feb. 2006) et al. based on the
GEMS (Martin et al. 2005) suite which is driven by Simics (Mag-
nusson et al. 2002) functional simulator. We implement all the
necessary functionality as described in the previous section for
the value predictor to enable correct and deadlock-free execution.
Some of the highlights(caveats) of the design of our value predictor
are:

• The value predictor is modeled as a table with 10 entries. It is
located near the memory system and is capable of intercepting
all memory accesses as shown in figure 3b.

• Extra messages added by the value predictor have been timed
as per the coherence protocol.

• There is no directory-to-value-predictor latency. This will not
significantly affect timing of protocol messages. We only avoid
a few race conditions with this simplification.

• For shared conflicting accesses, we always generate exclusive
requests to memory. This is purely a performance decision. For
fairness, we use this feature for all simulations of TM with or
without the value predictor.

• A cache line that has predicted data cannot be written back to
memory in the event of a writeback. In our design we simply
stall until the value prediction is verified.

For evaluation purposes, we use a microbenchmark to isolate
the performance benefits or losses from using a value predictor.
Processors execute critical sections inside multiple loopiterations
for the microbenchmark. To ensure load balancing, we introduce
some delay after the critical section is exited by a processor. The
amount of delay outside of the critical section is twice the delay in-
side the critical section. The microbenchmark performs2

10/n op-
erations on a shared queue. It is the same as the example outlined
in the section 3. We have 2 different versions of the microbench-
mark. The first version performs only insertions while the second
version randomly inserts or deletes elements from the head.With
this microbenchmark, we want to evaluate performance benefits in
a scenario where we have serializing members of the queue object.

3 This is a popular technique to avoid false sharing.

Unit Value
Processor single-issue, in-order, 1GHz
L1 Cache 16K, 4-way, split,1-cycle hit latency
L2 Cache 2M, 8-way, unified,10-cycle hit latency
Directory 80-cycle latency
Memory 4GB

Table 1. System Parameters for our simulations

Performance may still not be ideal because there might be other
data conflicts that may limit speedup. For ex. conflicts due toup-
dating next pointers of queue elements by concurrent transactions.
The two versions of the queue microbenchmark help us in obtain-
ing the best and worst case performance numbers for VP-TM.

We compare performance of our VP-TM with the LogTM
model to get an idea of the performance by adding the value pre-
dictor. The system parameters are as shown in Table 1.

To demonstrate the potential of VP-TM, we picked up a few
benchmarks from the SPLASH suite (Woo et al. 1995) and the
STAMP suite (Minh et al. 2008) of benchmarks. For the splash
applications, we simply replaced critical sections with begin and
end transaction primitives. We used Simics “magic” instructions
to for this purpose. These benchmarks have been picked because
they use a linked data structure within the parallel sectionand,
with the TM model, updates to the linked data structure has the
potential of limiting speedup. With VP-TM, we wish to see if we
can improve the performance of these benchmarks. Table 2 shows
the benchmarks along with the sizes used for simulation purposes.
To reduce the amount of simulation time for RADIOSITY, we do
not measure all iterations in the parallel section due to simulation
time concerns.

5.1 Predictions, Accuracy and Speedup

We show speedup numbers (over sequential execution) and num-
ber of aborts/restarts. For the microbenchmark, we also show the
accuracy of prediction. Predictions are divided into3 types:

• Good Predictions Predictions that are were verified to be correct
and can lead to a transaction commit.

• Bad Predictions Predictions that turn out to be incorrect at the
time of verification.

• Aborted Predictions These are predictions that had to be
aborted even before they were verified. Some of the causes of
such aborts might be deadlocks with other transactions which
caused a transaction to be aborted.

Prediction accuracy may not provide all the reasons for perfor-
mance speedup or degradation compared to TM systems. While
correct predictions have the potential to improve concurrency, mul-
tiple correct predictions on a single transaction can be undone by
a single bad/aborted prediction or even an abort which can lead to
performance degradation even with highly accurate VP. Similarly,
aborted predictions does not always indicate poor performance
since they represent wasted work when the transaction wouldhave
stalled anyway. In general however, we expect that a speedupover
TM would be due to reduced number of aborts and a reasonably
accurate predictor.

To get a better idea of how predictions affect performance, we
add a feature to our value predictor to control the max numberof
simultaneous predictions on a single entry. While increased number
of predictions are capable of increasing concurrency, theycan also
lead to cyclic dependencies as discussed in section 4.1. We vary



Benchmark Suite Input Units Measured Serializing Object
RAYTRACE SPLASH car parallel section memory manager list
RADIOSITY SPLASH batch 1 task task-queue

Intruder STAMP -a10 -l4 -n1024 -s1 parallel section packet queue
Labyrinth STAMP random-x24-y24-z3-n1024 parallel section pathvector list

Table 2. Benchmark Parameters

the max number of predictions from 1 to 5 to see if increased
predictions always result in better performance. In our figures, we
mention the different cases by the maximum number of predictions
allowed in each case.

To understand predictability within benchmarks better, wealso
conduct experiments where we manually identified some of theval-
ues that can serialize transactions. We disable the dynamicaddition
of entries inside value predictor and, instead, using magicinstruc-
tions in Simics, we pass these addresses to the value predictor. We
then compare the results with the standard dynamic addition. The
purpose of comparing with this software approach is to find out if
the queue structure is the only performance bottleneck in the appli-
cation and whether other conflicts can be easily predicted.

5.2 Performance Analysis

Figures 6a and b show the speedups for 1, 2, 3 and 5 predictions
per address (y-axis on the left). It also shows percentage oftotal
transactions that restarted for 1 of the VP cases4 and the LogTM
model, for 4, 8 and 16 processors(y-axis on the right). The dotted
bar in the graph indicates prediction accuracy for the 2 predictions
per address case using the right y-axis. As shown in figures, our
VP-TM system has improved performance of the microbenchmark
for both the cases. Looking at figure 6a, we can see that the value
predictor can easily capture the predictability for this data structure
and provide good performance by reducing restarts. However, even
for the random insert/delete microbenchmark, our VP-TM system
performs better, albeit not as good as the 1st case, than the base
LogTM system even with a low prediction accuracy as seen from
figure 6b. We attribute this performance benefit to the improved
concurrency with the VP-TM system that can lead to a reduced
number of aborts/restarts and thus reducing memory traffic.The
reduction in the prediction accuracy is due to the increasednumber
of aborts in the system that disturbs the stride of the value predictor.
With each restart or mis-prediction, the value predictor has to
recalculate a stride while the abort flag limits further predictions
until a transaction commits. This reduces the performance benefits
that can be obtained.

For the different VP cases, we find that increasing the numberof
predicted sharers leads to better performance for a smallersystem.
But for 16 processors we find that limiting the number of predicted
sharers works best. For a 16 processor system, the best performing
VP cases are when the number of predicted sharers are limitedto 2
or 3. This is because with increased number of sharers we can have
a cascade of mispredictions5 that get resolved in order, reducing
concurrency and degrading performance in such a case. This also
means that we can fix the number of speculated value entries within
a single value predictor entry to around 3 to 5 and still get good
performance.

5.3 Application benchmark results

Now that we know that the value predictor works on this data struc-
ture, the next step is to evaluate the performance for a transactional

4 2 predicted sharers per address in our case, since it is the best performing.
5 The abort flag in the VP per entry is specifically used to avoid such a
scenario.

benchmark that utilizes such a structure to see if speeding up ac-
cesses around the queue can lead to overall performance improve-
ment. For Raytrace and Radiosity benchmarks, we only ran exper-
iments up to 3 predicted sharers because of simulation time con-
cerns.

For the benchmarks we studied, VP-TM performs better than
the Log TM system for all cases even as the percentage of good
predictions are as low as 13% in Radiosity and Intruder benchmarks
to as high as almost 70% in Labyrinth benchmark from the STAMP
suite (Minh et al. 2008). Figure 7 shows speedup numbers for the 16
processors case for the LogTM model and the VP-TM model with
1,2,3 and 5 max-predicted-sharers per address. Some predictions
get aborted before they can be verified. Hence, the total percent
of good and bad predictions does not add up to 100. Overall,
the 2 max-predicted-sharers case is the best performer across all
benchmarks. As shown in the figure, VP-TM improves the speedup
for all benchmarks in most cases over 100%. With Labyrinth, VP-
TM improves the speedup up to 11 times compared to the base
LogTM case. The speedup numbers can be explained by looking at
the transactional characteristics of these benchmarks from table 8.
It can be seen that for the LogTM mode with no predictions,
the number of Negative acknowledgments (Nacks) and aborts are
high leading to poor performance. VP-TM succesfully manages to
convert some of the Nacks to concurrent execution leading tobetter
performance.

The coverage column indicates the percentage of conflictingac-
cesses that were successfully predicted. As we can see Labyrinth
has good coverage as well as high prediction accuracy which ex-
plains it stellar performance. Intruder, on the other hand,has poor
coverage and low prediction accuracy which leads to poor perfor-
mance. The benchmarks Raytrace and Radiosity have low coverage
and accuracy, however, even that is sufficient to improve concur-
rency and reduce Nacks and Aborts for those cases. Performance
is good also because Radiosity and Raytrace are not as transaction-
intensive as the other two benchmarks from the STAMP suite.

The performance of all benchmarks with VP-TM is satisfac-
tory except for the Intruder benchmark. The performance improve-
ment of VP-TM over TM for Intruder is only 10 to 15%. We know
that Intruder uses a queue-based structure for the incomingpacket
stream. To identify the predictability of this structure for this bench-
mark, we manually locate predictable members of this queue struc-
ture, namely the head, tail and the size, in this benchmark and use
magic instructions as a way to add these members to the value
predictor during program initialization. We also switch off the dy-
namic addition of entries at Nacks to the value predictor. Wecom-
pare this static approach to the usual case for VP.

The results are as shown in figure 9. From the results we see
that for some benchmarks, the dynamic addition of entries tothe
value predictor provides better performance. With Labyrinth, we
see that there is no performance difference in the static or dynamic
cases which means the only conflicting addresses are those that are
present in the queue/list structure which were identified manually
by the static scheme. That also explains why VP-TM performs so
much better for this benchmark. With Intruder, the dynamic case
performs worse than the static case. We believe the reason for this
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degradation is the addition of certain conflicting addresses to the
value predictor in the dynamic case, that are not predictable and
lead to frequent mis-predictions. We noticed that with the static
case, the total number of predicted addresses decreased butthe per-
centage of good predictions improved compared to the dynamic
case leading to better performance. We know that manual identi-
fication of shared conflicting addresses cannot be expected from
parallel programmers in all cases, however, we show that in some
cases, with manual identification, we can further improve the per-
formance of VP-TM.

5.4 Rationale, Complexity and Usefulness of VP-TM

From the results section, we observe that a TM system with value
prediction outperforms a Log-based TM system for almost all
benchmarks even with low prediction accuracy. We believe the
main reason for this is the reduction in the number of aborts with

the value predictor and the improved concurrency at different points
during parallel execution. This also means that bad and aborted
predictions do not affect performance of TM severely. Thesetwo
points are motivation to include the value predictor as partof HTM
systems in spite of the increased hardware requirements. Also, with
the advent of CMP architectures, parallel programming is expected
to be used frequently. While TM makes writing parallel programs
easier, with increasing number of processors, the TM model cannot
be expected to scale up. TM relies on optimistic speculativeexe-
cution, something which is not a safe bet with increasing number
of processors. With value prediction in TM, we can not only im-
prove concurrency, but we also reduce the number of aborts, that
can reduce memory traffic over the system bus, further improving
performance.

We do not expect VP-TM to benefit every application that is
expected to run on an HTM system. For some applications, like



      Total predns % Good %Bad Addresses 

 CPUS TXNS Commits ABORTS NACKS & coverage Predictions Predictions predicted 

Labyrinth 16 15926 2048 13878 52561 0 0 0  

 16 2266 2050 216 1021 698 99% 69.77 3.1519 3 

 

Intruder 16 4635 1720 2915 7062 0 0 0  

 16 2027 1720 307 3343 444 40% 27.93 1.8018 17 

 

Radiosity 16 10026 2048 7978 41809 0 0 0  

 16 2494 2048 446 19032 2928 45% 13.35 31.182 5 

 

Raytrace 16 123039 44736 78300 139494 0 0 0  

 16 55392 44260 11132 14233 1502 50% 15.65 14.78 6 

 

Figure 8. Table Showing transactional characteristics of application benchmarks for LogTM and VP-TM for each benchmark. The VP
numbers are for the Max 2 predicted sharers.
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SPECJBB 2000 (spe), TM has the potential to scale to a large num-
ber of processors. However, for many other applications, especially
the queue-based applications that we have discussed, TM cannot
provide any benefit over standard lock-based approaches. Such ap-
plications can be found be found in most standard parallel bench-
mark suites which means they do form an important set of appli-
cations that are expected to run on CMPs. For such applications,
VP-TM can be used to provide improved performance.

6. Related Work
Although similar work has been performed for TLS (Cintra and
Torrellas 2002; Steffan et al. 2002), there is no research work that
performs value prediction to improve concurrency of transactional
memory programs. Dependence-aware transactional memory (Ra-
madan et al. 2009) is the closest to our work. In their work, they
forward data within transactions as it is produced. Although they
do not need a value predictor, multiple writes to a value can lead
to restarts. They also demand significant changes to the coherence
protocol compared to VP-TM.

7. Conclusion and Future Work
Transactional Memory has been put forth as a scheme to improve
performance of parallel programs, mainly database applications.
With this paper, we try to put forth a case for using a value predictor

that can extend the concurrency of transactions for a certain class
of scientific applications. We find that the simple stride-based value
predictor can boost the performance of a TM system even with a
low prediction accuracy. With increasing number of aborts,we still
manage to see speedups up to 16 processors.

Future work for this paper to evaluate back off techniques to
improve speedup in presence or multiple aborts with increasing
number of processors and control the number of predictions made
to reduce the number of aborted predictions. We would also like
to implement a way to identify predictable addresses in hardware
without programmer intervention.
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