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Abstract
In the transactional memory (TM) community, much debate
has revolved around the choice of strong vs. weak isola-
tion (SI vs. WI) between transactions and conflicting non-
transactional accesses. In this position paper we argue that
what programmers really want is the natural transactional
extension of sequential consistency (SC), and that even SI is
insufficient to achieve this.

It is widely agreed among architects and language de-
signers that SC imposes unacceptable hardware costs and
compiler restrictions. Programmer-centric, relaxed memory
models were developed as a compromise, guaranteeing SC
to programs that “follow the rules” while admitting many of
the compiler optimizations that result in fast single-threaded
execution. We argue for an analogous transactional data-
race-free (TDRF) programming model. We observe that WI
is strong enough to implement this model, and further that
weakly isolated TM systems based on redo logging can pro-
vide the safety guarantees (no “out-of-thin-air reads”) re-
quired by languages like Java. Seen in this light, strong iso-
lation (SI) serves only to require more constrained behavior
in racy (buggy) programs. We submit that the benefit is not
worth the cost, at least for software TM.

1. Introduction
Databases systems guarantee that the execution of a se-
quence of transactions is serializable; that is, that any actual
execution must produce results equivalent to an execution in
which the transactions execute indivisibly in some sequential
order [22]. This powerful idea provides the programmer an
intuitive programming interface, while allowing the DBMS
sufficient freedom to optimize the actual concurrency of the
execution by overlapping transactions wherever it is possible
without violating serializability.

Inspired by these transactional databases, Herlihy and
Moss [15] observed that transactional memory (TM) would
be a powerful tool to enable the development and compos-
able use of concurrent data structures.
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The apparent simplicity of the transactional interface to
memory hides an underlying complication. Every access to a
transactional database is required to be part of a transaction.
In TM however it is sometimes natural and desirable to
access the same data both inside and outside transactions.
Extra-transactional access occurs in the well-documented
publication [20] and privatization [17, 30, 32] programming
idioms, where programmers use transactions to transition
data back and forth between logically shared and private
states, and access private data nontransactionally.

In a program with publication and privatization an obvi-
ous question arises: what happens if there is a race between
conflicting transactional and nontransactional accesses—a
case in which nontransactional access in thread A is not sep-
arated from transactional access in thread B by any transac-
tion in thread A? Blundell et al. [8] observed that hardware
transactional memory (HTM) designs seem to exhibit one of
two possible behaviors when confronted with a such a trans-
actional race. Some hardware systems provide strong iso-
lation1 (SI), where transactions are isolated from both other
transactions and concurrent nontransactional accesses, while
others provide weak isolation (WI), where transactions are
isolated only from other transactions. In a WI system, non-
transactional reads in a racy program may see the state of
an incomplete (or even doomed) transaction; likewise, non-
transactional writes may appear to occur in the middle of a
transaction.

Larus and Rajwar, in an apparent attempt to provide an
intuitive definition of Blundell’s SI, present a third alter-
native [17, p. 27]: “Strong isolation automatically converts
all operations outside an atomic block into individual trans-
actional operations, thus replicating the database model in
which all accesses to shared state execute in transactions.”
This definition is actually much stronger than Blundell ap-
pears to have intended: making nontransactional accesses
miniature transactions requires that they serialize with re-
spect to one another, resulting in a system in which non-

1 Blundell actually uses the term strong atomicity, presumably based upon
the hardware memory notion of write atomicity [12], to describe this prop-
erty. Larus and Rajwar [17] note that the database terminology for this prop-
erty is actually isolation. We prefer “isolation” because the database com-
munity already has an incompatible meaning for atomic, while isolation is
unbound in the memory literature.
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transactional races are guaranteed to have sequentially con-
sistent [16] (SC) behavior. Our use of SI will always refer to
Blundell’s definition.

Strong isolationists argue that SI is more intuitive than
WI, and that it is natural to implement in hardware transac-
tional memory. Weak isolationists have historically agreed
about the semantic benefits of SI, but are both unwilling to
pay the overhead of SI in a software system and unconvinced
that SI is practical in virtualizable hardware.

We argue that, just as parallel programmers expect se-
quential consistency, transactional programmers expect trans-
actional sequential consistency (TSC)—SC with the added
restriction that memory accesses from a given transaction
should be contiguous in the total execution order. Neither SI
nor WI is strong enough to give this guarantee. Moreover,
we doubt that even most strong isolationists will be willing
to accept the cost of TSC, due to its requirement of SC for
nontransactional accesses.

This dichotomy between what programmers want and
what implementers want is evocative of the arguments of
Adve and Hill [7] in their development of the programmer-
centric data-race-free memory models. Such models are
now widely accepted; among other places, they appear
in Java [19] and in the emerging C++ standard [10, 19].
Grossman et al. [14], Moore and Grossman [21], Abadi et
al. [2, 4], and Spear et al. [28, 30] all suggest that an anal-
ogous programmer-centric model may provide the best of
both worlds for TM, by affording TSC semantics to transac-
tional data-race-free (TDRF) programs.

Such a model captures the idea that races are likely to
be bugs. It enables correct programs and transactional pro-
gramming paradigms to be ported safely and easily across
both languages and hardware platforms, present and future.

With a TDRF model as context, we show that a TM im-
plementation with SI semantics provides no semantic ad-
vantage over weaker implementations for data-race-free pro-
grams, and little extra benefit for programs with races. Given
the cost of SI in software TM, the need for HTM/STM inter-
operability, and the difficulty guaranteeing SI across context
switches even in hardware, we conclude that SI is unneces-
sary overkill. WI with some implementation restrictions is
sufficient to provide the guarantees required by languages
like Java. Languages (e.g., C++) willing to further relax the
requirements for incorrect programs admit even faster WI
implementations.

In Section 2 we provide an overview of the background
required for the discussion. In Section 3 we formalize the
TDRF model, and show how it can be used to define the
same Java-like happens-before consistency model developed
by Grossman et al. [14] to constrain the behavior of racy
programs. We show that some weakly isolated implementa-
tions are compatible with this resulting memory model. In
Section 4 we look at the possible advantages of strongly iso-

lated solutions, as well as their costs. Finally in Section 5 we
conclude and present future work.

2. Background
We present some simple background that formalizes some
of the notions from the introduction that are required for the
rest of the paper. Readers familiar with memory models and
strong and weak isolation may skip to Section 3.

2.1 Traditional Memory Models
The model of program execution for single threaded code
is simple. Program statements appear to execute sequen-
tially in order, with one statement completing before the sub-
sequent statement starts. These intuitive semantics leave a
large amount of room for compiler and hardware optimiza-
tions.

The natural extension of this model to a multithreaded
setting is defined by Lamport as sequential consistency [16]
(SC). A multithreaded system should appear to execute pro-
gram statements from each thread sequentially in order, with
operations from each thread interleaving in some global to-
tal order. Read operations should return the value of the most
recent write to the same location in this total order.

SC maintains the semantic cleanliness of the single
threaded model, but greatly restricts the potential for op-
timizations at both the hardware and compiler levels. With
very few exceptions, modern systems provide a memory
consistency model that is weaker than SC. These models are
system-centric and system-specific, depending heavily on
implementation details. Writing, understanding, maintain-
ing, and porting parallel code in this setting is difficult and
thus extremely costly.

Programmer-centric memory models were developed to
make it easier to understand programs and to port them
from one system to another. These models specify a contract
between the programmer and the system. Acknowledging
the semantic benefit of SC, modern memory models are
written in Adve’s sequentially consistent normal form [5].
If the programmer writes applications that conform to the
memory model contract, then the system will appear to be
sequentially consistent. The contract is designed in such a
manner as to maximize programmability while minimizing
optimization barriers.

The programming language community has adopted
Adve and Hill’s data-race-free contract 2 as the basic model
for both Java and C++. Using a framework similar to Dubois
et al.’s weak ordering [13], these models separate memory
operations into normal accesses and various forms of syn-
chronization accesses. They then exploit the fact that most
of the important single-threaded optimizations only result in
observably non-SC behavior in the presence of data races—
conflicting normal accesses (accesses by different threads to
the same location where at least one is a write) that are not

2 Technically data-race-free-1 [6].
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Initially: x = y = 0

Thread 1 Thread 2
1: x = 1 y = 1

2: r1 = y r2 = x

Figure 1. Can r1 = r2 = 0? TSC says no, but SI allows
the unexpected result.

separated by synchronization accesses. The data-race-free
memory model contract specifies that if the program has no
data races then the system will appear to be sequentially
consistent.

2.2 Strong Isolation
Strong isolation (SI) has two competing definitions in the
TM literature. It was originally proposed by Blundell et
al. [8] to describe TM implementations in which transac-
tions serialize both with other transactions and with non-
transactional accesses. They later refined the definition [9]
to describe TM implementations that provide the proper-
ties of containment and non-interference for transactions,
without any programmer annotation. Informally, contain-
ment means that a transaction is invisible until it commits;
non-interference means that nontransactional writes do not
appear to occur mid-transaction.

Maessen and Arvind [18] capture the same properties in
their ordering rules for transactional memory. We will say
that strongly isolated TM implementations provide the guar-
antee that if a nontransactional access conflicts with any ac-
cess in a transaction, then it is ordered the same way with
respect to all accesses in the transaction. In this framework,
containment says that if a transactional write is seen by a
nontransactional read, then all accesses internal to the trans-
action must have happened before the read. Non-interference
says that if a transactional read sees a nontransactional write,
then the write must have happened before any access in the
transaction.

Larus and Rajwar provide a more operational defini-
tion [17, p. 27]: a strongly isolated TM implementation
behaves as if all nontransactional accesses were single-
instruction transactions. This is not equivalent to Blundell’s
SI given the assumption that transactions are serializable: if
every nontransactional access to shared data is a singleton
transaction, then all shared data accesses must serialize, re-
sulting in behavior that will always appear to be sequentially
consistent. Blundell et al. make no guarantees with respect to
nontransactional accesses; in fact, they explicitly state that
all TM implementations must chose a traditional memory
model in addition to an isolation model. Larus and Rajwar’s
definition is essentially SI implemented on top of an already
sequentially consistent system, resulting in a model equiva-
lent to transactional sequential consistency (TSC) as given
in Section 3, Definition 1. Our use of SI always refers to
Blundell’s definition.

Thread 1 Thread 2
1: Node* n = new Node() Node* n = NULL

2: n->data = job atomic {

3: atomic { n = worklist.dequeue()

4: worklist.enqueue(n) }

5: } Job* j = n->data

Figure 2. Thread 1 initializes and publishes a list node.
Thread 2 privatizes the node and interacts with it nontrans-
actionally.

It is easy to see the difference between SI and TSC.
Consider the well known example of Figure 1. Reasoning
about this code in an SC setting disallows the outcome of r1
= r2 = 0. TSC requires sequential consistency, so it too
prohibits this outcome. On the other hand, SI relies on an
underlying memory model to define the outcome, and may
well permit an ordering loop.

To the best of our knowledge, all extant implementations
of SI assume a relaxed underlying model. In particular, the
implementations of Shpeisman et al. [27] and Schneider et
al. [24] are realized as extensions to Java, and presumably
inherit its relaxed memory model [19]. Similarly Abadi et
al. [3] operate in the context of C# with its relaxed model.
All of these relaxed models permit the unintuitive result of
r1 = r2 = 0.

2.3 Weak Isolation
Weak isolation (WI) describes any TM system in which
transactions serialize only with other transactions. In gen-
eral, this means that the system may fail to guarantee con-
tainment, non-interference, or both in the presence of trans-
actional/nontransactional races. Furthermore, weakly iso-
lated systems need to be careful not to introduce races that
did not exist in the original program. This is particularly
important when supporting publication and privatization.

It is natural to use transactions to transition data between
logically shared and private states. In Figure 2, Thread 1
privately allocates and initializes a worklist node with a job,
publishing it in a transaction. Thread 2 dequeues a node,
privatizing it, and privately looks at the associated job. The
accesses to n->data are conflicting accesses, but not races,
as the two threads should not be able to perform them at the
same time.

Unfortunately many weakly isolated implementations do
not correctly handle publication, privatization, or both, in-
troducing races and unexpected behavior. We describe two
recent transactional models that allow both patterns, requir-
ing an implementation to take steps to make sure that it
does not create artificial races in otherwise correctly syn-
chronized code. The semantics described by Grossman et
al. [14], Abadi et al. [2], and Moore and Grossman [21] all
make similar requirements.

Menon et al [20] define transactional atomic {} blocks
in terms of reductions to Java locks. This maps transactional
memory directly into the existing Java Memory Model. If the
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transactional program is data-race-free after the reduction,
then publication and privatization work as expected.

The most intuitive version of Menon’s reduction is single
global lock atomicity (SGLA). Transactions must behave as
if they acquire and release a single global lock on entry and
exit. More complicated reductions act as if they acquire per-
address locks at various times during their execution. These
can admit higher-performance implementations, but sacri-
fice the guarantee of transactional serializability and require
the programmer to understand the sometimes-complex re-
duction in order to reason about races.

As an alternative to reducing transactional memory to an
existing, lock-based memory model, Spear et al. [28] de-
velop memory models based directly on transactions as the
fundamental building block. Strict serializability (SS) is pre-
sented as the analogue of SGLA. SS says that a thread’s non-
transactional accesses are ordered with respect to their pre-
ceding and following transactions in program order, and that
all the transactions in the system have a total global order.
As with SGLA, SS has relaxations that provide implemen-
tations with more optimization flexibility, however these re-
laxations maintain the serializability of transactions.

3. Transactional-Data-Race-Free
Writing a parallel program is a large undertaking, even with
transactional memory. Blundell et al. [8] showed that strong
and weak isolation are incompatible. There exist programs
that are correct (for some programmer defined notion of
correctness) when executed under strong isolation that are
incorrect under weak isolation, and vice versa. In order for
transactional memory to become successful, some uniform
semantics must be adopted by the community.

The intuition behind Adve and Hill’s data-race-free model
serves as the basis for the memory models in both Java and
C++. We use the same reasoning and structure to develop
a simple model that can be used as a basis for a real-world
transactional model that Java or C++ programmers can un-
derstand and use.

Grossman et al. [14] make the same extension to trans-
actionalize the Java Memory Model’s (JMM) definition
of happens-before consistency. Unsurprisingly, our model,
when extended to a happens-before consistency setting, is
identical to theirs. The data-race-free foundation allows us
to emphasize transactional sequential consistency as a basis
for programming with TM in many different settings.

3.1 TDRF
Transactional programmers expect the system to be sequen-
tially consistent, with the added constraint that accesses
within a transaction happen atomically. This suggests the
following natural transactional extension of SC.

DEFINITION 1. A system is transactionally sequentially con-
sistent (TSC) if and only if the result of any realizable exe-
cution of a program is equivalent to some sequentially con-

sistent execution of the program in which a transaction’s ac-
cesses occur contiguously in the global total order of ac-
cesses.

TSC is what Larus and Rajwar referred to as strong iso-
lation. It is also equivalent to the strong semantics described
by Abadi et al. [1] and the StrongBasic semantics developed
by Moore and Grossman [21].

This notion is also similar to a number of different ideas
in the memory model literature. In Shasha and Snir’s [26]
model a compound operation is very similar to a transac-
tion. Maessen and Arvind [18] provide essentially the same
idea in their discussion of store atomicity for transactional
memory, but allow local reorderings that are not sequentially
consistent. Adve and Hill [7] muse about transactional seri-
alization (essentially TSC) as a possible foundation for their
memory models, but dismiss it as too costly.

The following are a simple set of rules extending the
data-race-free-0 [7] model to a setting that relies on transac-
tional consistency as its basis for execution, and uses trans-
actions rather than locks for synchronization.

DEFINITION 2. Two accesses conflict if they access the
same location, at least one is a write, and they are executed
by different threads.

DEFINITION 3. Accesses from an individual thread are or-
dered by program order.

DEFINITION 4. All transactions in the execution are totally
ordered by a transactional order (<t). If transaction A is
transactionally ordered before B then access a in A is trans-
actionally ordered before access b in B.

DEFINITION 5. The irreflexive transitive closure of program
order and the transactional order defines a transactional-
happens-before (<thb) partial ordering on all accesses in
the execution.

DEFINITION 6. A transactional data-race exists between two
accesses in an execution if and only if they conflict and are
not ordered by <thb.

DEFINITION 7. A program is transactional-data-race-free
(TDRF) if and only if no transactional data races exist in
any TSC execution of the program.

DEFINITION 8. A TM implementation is TDRF if and only
if any realizable execution of a TDRF program produces the
same results as some TSC execution of the program.

Transactional data-race-freedom does not directly con-
strain the behavior of TM implementations for racy pro-
grams. This may be appropriate in languages like C++, but
Java has strict safety requirements for all programs. We can
easily accommodate Java by using the same happens-before
extension that the JMM uses. This extension results in the
model of Grossman et al. [14].
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Initially x = 0

Thread 1 Thread 2
1: atomic {

2: x = 1

3: r1 = x

4: abort

Figure 3. This code fragment depicts a situation where
Thread 1 writes x transactionally and then aborts due to
contention. Can r1 = 1? THBC disallows the result, but a
weakly isolated undo log implementation would exhibit this
behavior.

DEFINITION 9. An execution of a program is transactional-
happens-before consistent (THBC) if the value returned by
every read access in the execution can be explained based on
the transactional happens-before ordering in the following
way. A read is allowed to return the value of the last write
to the same location that is the most recent along some <thb

path, or of any write to the same location that is unordered
by <thb.

DEFINITION 10. A TM implementation is THBC if and only
if every realizable program execution is THBC.

A THBC system guarantees TSC to TDRF programs. By
guaranteeing THBC to racy program we can avoid behaviors
like “thin-air-reads” that are considered dangerous in Java.
(We omit Java’s treatment of causality for brevity, but assert
that THBC fits into the JMM in the same way Java’s cur-
rent happens-before consistency does. Additionally a THBC
based JMM will suffer from the same limitations as the cur-
rent JMM, as discussed by Ševčı́k and Aspinall [31].)

3.2 Permitted Implementations
While TM generally assumes a speculative implementation
to achieve good scalability, transactional memory models
do not address speculation directly. Any speculative imple-
mentation of transactional memory that guarantees TSC to
TDRF programs can be used in a setting where the behavior
of racy programs can be undefined. Requiring THBC from
racy programs restricts the pool of acceptable implementa-
tions but still admits certain weakly isolated implementa-
tions that do not instrument nontransactional code.

Weakly isolated, in-place update TM implementations
make transactional speculative updates to shared locations
directly, and store the valid values in a local undo-log so that
they can be restored if necessary. Menon et al. [20] and Spear
et al. [28] both note that in-place update is fundamentally
incompatible with their models, so it should be no surprise
that they are incompatible with THBC as well.

Consider a nontransactional read that returns the value of
an unordered speculative transactional write that was done in
place, as in Figure 3. If that write is later rolled back because
the transaction aborts, it does not appear in any thread’s
history, and thus the read appears to have obtained the value

Initially x = 0

Thread 1 Thread 2
1: atomic {

2: x = 1

3: x = 2

4: abort

5: r1 = x

Figure 4. This code fragment depicts a situation where
Thread 1 writes x inside a transaction, logging the undo
value 0. Thread 2 writes 2 to x. Then Thread 1 aborts due
to contention, reverting x to 0. Can r1 = 0? THBC disal-
lows the result, but a weakly isolated undo log would admit
this behavior.

Initially x = 0

Thread 1 Thread 2
1: atomic {

2: x = 1

3: r1 = x

4: x = 2

5: }

Figure 5. An example of containment. Can r1 = 1? Strong
isolation says no, THBC says yes.

out of thin air, an obvious violation of the TDRF happens-
before values-read requirement.

An undo log implementation may also undo the effect of
a nontransactional write, if the transaction wrote to the same
location and is aborting. This is depicted in Figure 4. In this
case the only valid value that the load to r1 can see is 2, as
it is the most recent value written to x along a <thb path. In
this example, the speculation mechanism introduces a write
that never occurs in any program history (the undo write),
generating a result incompatible with THBC.3

Weakly-isolated, buffered update TM implementations
make speculative writes into a private buffer, the redo log,
and then propagate those writes to their correct locations
once a transaction is guaranteed to commit. Because these
writes are never made visible to other threads while they are
still speculative, neither of the two problems described above
for in-place update systems can occur.

4. Strong Isolation
The argument from strong isolationists has been that SI is
more intuitive than WI. SI does constrain the behavior of
racy programs more than weaker options. Recall that SI
guarantees containment and non-interference; this is true
even in the presence of transactional data races. Weaker
models at best maintain happens-before consistency, which
prevents out-of-thin-air values from being read.

3 Alternately, we could say that in the realized history the read at line 5 sees
the write that created the initial value of 0, but this is not allowed under
<thb either, given the intervening “lost” write at line 3.
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Initially x = y = 0

Thread 1 Thread 2
1: atomic {

2: x = 1 y = 1

3: r1 = y r2 = x

4: }

Figure 6. SI is not TSC, as it makes no guarantees about
program order.

Consider the code fragment in Figure 5. The two transac-
tional writes of x in Thread 1 race with the nontransactional
read of x in Thread 2. Under THBC, the read in thread 2
may return 0 (the initial value of x), 1, or 2, as they are all
valid based on the values-read specification (Section 3, Def-
inition 9).

It is easy to see how a weakly isolated buffered-update
implementation might actually realize the result r1 = 1.
The implementation may keep its redo-log as a time-ordered
list of writes. Once committed, it could write this log back
to memory in order, meaning that there exists a point in time
where the write from line 2 has occurred and not yet been
overwritten by the write from line 3. If the read occurs during
that period, it will see the partially committed results. This is
the same result one would expect using an SGLA reduction.

Strong isolation does not permit the result r1 = 1: if the
read sees the value of any transactional write, then it must
see the results of all of the transactional writes. In this case,
it must return 2. This result appears to require that a strongly
isolated STM implementation be prepared to block on the
nontransactional read of x until the transactional writer has
cleaned up completely. An analogous situation occurs when
a nontransactional write races with a transactional read. The
write must appear to occur either totally before or after the
transaction.

Preservation of non-interference and containment re-
duces the set of unexpected results a racy program might
generate, but it does not remove all unexpected results.

Figure 6 shows a case where SI fails to prohibit the unex-
pected result of r1 = r2 = 0. SI says only that neither of
the instructions in Thread 2 may appear to occur during the
execution of Thread 1’s transaction. The compiler may chose
to reorder the independent instructions in Thread 2 based on
its underlying memory model. Likewise, the hardware may
reorder the writes on many machines. While TSC disallows
the unexpected result, SI clearly does not.

A strongly isolated implementation ensures TSC results
for certain racy programs. One could imagine a memory
model in which these programs are considered to be prop-
erly synchronized. Such a model continues to provide TSC
for TDRF programs, but it authorizes programmers to write
some forms of racy programs. This is a much more compli-
cated model to reason about: one must decide which races
are bugs and which ones aren’t.

Thread 1 Thread 2
1: atomic {

2: r = x x = 1ull

3: }

Figure 7. Is this a correct program under an SI-based mem-
ory model?

4.1 Access Granularity
An additional complication of any programmer-centric model
based on strong isolation is the need to explain exactly what
is meant by a nontransactional access. Consider Figure 7.
Here x is an unsigned long long and is being assigned
to nontransactionally. Is this a race under a memory model
based on SI? The problem is that Thread 2’s assignment to
x may not be a single instruction. It is possible (and Java
in fact permits) that two 32 bit stores will be used to move
the 64 bit value. Furthermore, if the compiler is aware of
this fact, it may arrange to execute the stores in arbitrary
order. The memory model now must specify the granularity
of protection for nontransactional accesses.

4.2 TDRF Implementation With SI
While TDRF does not require a strongly isolated TM im-
plementation, it does not exclude one. Grossman et al. [14]
point to sequential reasoning as an advantage of strong isola-
tion. Given a strongly isolated TM implementation, all tradi-
tional single-threaded optimizations are valid within a trans-
actional context, even for a language with safety guarantees
like Java. With this in mind we would not discourage devel-
opment of strongly isolated hardware transactional memo-
ries.

This notwithstanding, we note that a standard redo-log
based TM implementation with a hashtable write-set meets
two of the three properties Grossman et al. attribute to SI,
permitting many of the same traditionally unsafe compiler
optimizations that SI does, and weakening the potential ar-
gument for software SI. Furthermore, recent work of Spear
et al. [29] shows that this style redo-log implementations of
STM can perform competitively with undo-log implementa-
tions.

4.3 Costs
We estimate the overhead of strong isolation using the De-
launay triangulation benchmark distributed with the RSTM
framework [25]. This particular implementation of mesh cre-
ation makes heavy use of privatization, first geometrically
partitioning the space of points and assigning threads inde-
pendent regions to triangulate, and then using transactions to
“stitch up the seams”. The application is correct under TDRF
as written, as various private/public phases of computation
are separated by synchronization barriers.

All of the private uses of data are annotated. By instru-
menting just these uses with operations that inspect and
modify metadata, we can approximate the cost of a strongly
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isolated TM implementation. There are many factors that
we cannot measure in our framework which prevent us from
making more than a general statement about the relative cost
of SI to WI. Shpeisman et al. [23] present a number of ag-
gressive compiler-based optimizations that can be done to
reduce the cost of SI, and that we are unable to do in our li-
brary implementation. At the same time, our implementation
provides precise identification of privatized data, avoiding
the need to instrument anything that is never shared.

Aggressive alias analysis can prove that certain locations
are not accessed inside of transactions and thus do not need
instrumentation. We believe that this analysis would not dis-
tinguish our annotated private uses, as they conflict with
transactional accesses. It is possible that stronger, barrier
aware race detection could eliminate all instrumentation
in this circumstance; however we find no evidence of this
power in currently tractable alias analysis. It is possible as
well that only instrumenting the annotated private use is an
overly optimistic decision. Overall we feel that it plausi-
bly reflects a general “best-cast” scenario for alias analy-
sis optimization. Other compiler analysis might be used to
amortize instrumentation over multiple nontransactional ac-
cesses. The effectiveness of this optimization is likely to be
highly application dependent as well. Escape analysis is not
applicable here as the objects are all truly shared.

The mesh application spends less than 5% of its total
execution time inside transactions. This highlights the cost
of SI, and downplays costs related to ensuring that the WI
implementation is publication and privatization safe [20,
28]. We argue that phase-based privatization is likely to
be an attractive programming idiom in many data-parallel
applications. For these the cost of SI instrumentation is likely
to be prohibitive.

Our base implementation is a word-based, lazy-acquire,
redo-log, timestamp-validating implementation similar in
spirit to TL2 [11]. It is augmented with transactional fences
at the start and end of transactions in order to ensure pub-
lication and privatization safety [28]. Our SI implementa-
tion takes the same baseline system, and rather than adding
fences, instruments private read and write accesses similarly
to [23] (see Figures 8 and 9 for pseudo-code). Note that the
instrumentation is somewhat generous: we do not need to
check for contention as our code is known to be race free.
Hidden in the pseudo-code is the fact that accessing an orec
is a volatile operation.

We consider three test platforms: a 2.33 GHz Intel Core2
Duo running Mac OS 10.5.5, a Sun Niagara T1 running
Solaris 10, and a 1.2GHz SunFire 6800 also running Solaris
10. We compiled with gcc 4.2.1 on the Core2 machine and
4.2.4 on both of the Suns always using optimization level
O3. We triangulate one million points using a single thread,
and report private work times that are the average of five
runs.

write(address,value)

orec = hash(address)

old = compare_and_swap(orec, orec, 0)

address = value

orec = old

Figure 8. The write instrumentation locks the ownership
record by writing to it atomically. It then writes the desired
datum and restores the original orec. In a real implementa-
tion we would need to check to see if our lock was success-
ful, and handle contention if it failed. We would also need to
compute a new version.

read(address)

while (true)

orec = hash(address)

cache = orec.version

if (cache.locked)

continue

temp = address.value

if (cache == orec.version)

return temp

Figure 9. The read instrumentation. We need a consistent
snapshot of the value, while the orec is not locked. In a real
implementation we would need to handle contention if the
orec was locked, rather than continuing.

The WI implementation completes in 4.6, 13.7, and 33.9
seconds for the Core2, SunFire, and Niagara machines re-
spectively. Unsurprisingly, instrumenting for SI adds sig-
nificant overhead, producing execution times of 6.7, 21.6,
and 44.6 seconds, respectively—increases of 46%, 57%,
and 30%. It appears that the volatile accesses and increased
cache pressure of the instrumentation interfere with the more
aggressive architectures, limiting their opportunity for opti-
mization. On all three machines, the overhead seems a heavy
price to pay for the limited benefits of SI under TDRF.

5. Conclusion
Viewing transactional memory through the lens of a tradi-
tional data-race-free memory model allows us to provide
the behavior that the programmer expects—transactional
sequential consistency—while at the same time allowing
high-performance weakly isolated TM implementations.
The model also addresses portability, as transactional-data-
race-free programs can be run on any conforming TM imple-
mentation, including stronger systems should they become
available in hardware. Indeed this flexibility is one of the
major advantages of TDRF.

Java is of particular interest because it requires more
than just TSC execution for TDRF programs: racy programs
must appear at least transactional-happens-before consistent.
Even this stronger requirement does not necessitate strong
isolation, as we have seen that weakly isolated implementa-
tions that refrain from making speculative writes visible are
compatible.
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Strong isolation is overkill for a Java-like model, and
the cases where it isn’t (i.e., models that guarantee TSC
for certain racy programs) are unattractive in both overhead
and complexity. If we adopt the position that data races
are bugs, then TDRF would appear to be the “right” model
for transactional memory, and there is no need for strong
isolation.

Future Work The transactional-data-race-free model as
given here may be more limiting for implementations than
it needs to be. Programmers using publication and privatiza-
tion correctly know which transactions act to publish or pri-
vatize data. Spear et al.’s [28] relaxation from SS to SSS (se-
lective strict serializability) takes advantage of this knowl-
edge, allowing the programmer to indicate which transac-
tions do which activities. Implementations may then use this
information to avoid certain kinds of overhead on transac-
tions that are not marked. Abadi et al. [2] propose a similar
relaxation, in which the programmer explicitly marks the
data that are published or privatized. We plan explore SSS-
style relaxation of TDRF ordering, and to evaluate both its
potential for performance improvement and its (subjective)
cost in notational complexity.
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