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Abstract
Transactional Memory (TM) is a new concurrency control
mechanism that aims to make parallel programming for Chip
MultiProcessors (CMPs) easier. Recently, this topic has re-
ceived substantial research attention with various software
and hardware TM proposals and designs that promise to
make TM both more efficient. These proposals are usually
analyzed using existing TM-benchmarks, however the per-
formance evaluation of TM proposals would be more solid if
it included more representative benchmarks, especially from
the emerging future CMP applications in the Recognition,
Mining and Synthesis (RMS) domain.

In this work, we introduce RMS-TM, a new TM bench-
mark suite that includes selected RMS applications. Besides
being non-trivial and scalable, RMS-TM applications have
several important properties that make them promising can-
didates as good TM workloads, such as I/O operations inside
critical sections, nested locking, and various percentages of
time spent in atomic sections and high commit/abort rates
depending on the application.

We propose a methodical process to construct a TM
benchmark suite from candidate applications: in this en-
deavor, we divide the application selection process into static
and dynamic pre-transactification phases and propose crite-
ria for selecting the most suitable applications. Analyzing all
the BioBench and MineBench RMS applications and apply-
ing our methodology, we selected 4 applications which form
the RMS-TM benchmark suite. Our experiments show that
the transactified versions of RMS-TM applications scale as
well as their lock-based versions.

Keywords Transactional Memory, Workload Characteriza-
tion, BioBench, MineBench.

1. INTRODUCTION
Since it is expensive (in terms of area and power consump-
tion) to extract more Instruction Level Parallelism (ILP)
from modern processors, multicore chips have become a de-
facto standard, as they provide performance scalability by
exploiting Thread Level Parallelism (TLP). However, the
complexity of parallel programming and the difficulties of
implementing efficient and provably correct programs limit
the effective use of these Chip MultiProcessors (CMPs).
New programming models have been proposed to ease the
writing of parallel applications that perform well on multi-
core architectures. Transactional Memory (TM) [14] is one
such programming model for control.

One could compare TM with locking, the classical con-
currency control mechanism. Lock-based implementations
provide consistency and isolation to threads that access
shared resources, although programmers have to explicitly
protect those shared resources. With TM, programmers sim-
ply mark code regions that access shared resources while the
TM system provides consistency and isolation. Furthermore,
TM enables programmers to write simple parallel code with
coarse-grained transactions that could perform as well as
parallel code that uses fine-grained locks.

Recognition, Mining, Synthesis (RMS) applications have
clear relevance to mainstream workloads and have often
been proposed as a good workload for future many-core
processors. This has prompted us to study whether RMS
applications (BioBench [1] and the MineBench [20]) benefit
from using TM or not. As we show in Sections 2 and 4, the
characteristics of these applications are different from the
existing TM benchmarks, thus, they provide a further set of
challenging test applications useful to TM researchers. For
example, the applications we study involve I/O operations
within critical sections, deep nesting levels, and various mix
of long and short transactions.



Before selecting applications for transactification from
the RMS benchmarks, we realized the we needed a me-
thodical, well-defined procedure. Consequently, we devel-
oped a set of criteria that makes a lock-based threaded paral-
lel program a good candidate for transactification. In a pre-
transactification phase, we apply these criteria, such as a
nested locking, complex function call traces, and irrevoca-
ble [29] 1 operations inside lock blocks, and filter out those
BioBench and MineBench applications that do not gener-
ate interesting cases from a TM point of view. The selected
applications are then transactified from their original lock-
based parallel versions using a prototype version of Intel
C++ compiler with Software Transactional Memory (STM)
support [28, 7] in the transactification phase. Finally, we
provide information about the lock-based and the TM-based
implementations of the selected applications in order to pro-
vide a direct comparison to measure the benefits of TM.
Moreover, we discuss the challenges faced while transacti-
fying the applications. We validate the characteristics of the
transactified applications by showing experimental results
performed on a multi-core machine. According to our ex-
perimental results, the selected applications present a wide
range of different transactional and runtime characteristics
that qualify them as a new and comprehensive benchmark
suite for evaluating TM designs. Among those properties,
the most desirable and important ones are the following:

• Nested transactions (up to depth level 9) - the depth of
nested transactions are unknown at compile time due
to the conditional recursive function calls inside atomic
blocks.

• Large amount of I/O operations, memory management
operations and library calls in atomic blocks.

• Complex function calls and control flow inside atomic
blocks.

• Various mix of long/short transactions with different
sizes of read and write sets.

• High and low contention.

The rest of this paper is organized as follows: Section 2
summarizes other work proposed in this area and we also de-
scribe our motivation. In section 3, we introduce RMS-TM
benchmark suite. The analysis and selection of the RMS-
TM applications are covered in Section 4. In section 5,
we show our experimental results for TM-based applica-
tions and compare their behavior against the equivalent lock-
based versions. Section 6 concludes this paper and section 7
comments on future work.

1 When a transaction runs in irrevocable mode, it is guaranteed to commit
and all other transactions in the system are aborted

2. RELATED WORK
This section is intended to explain other benchmarks devel-
oped in recent years for analyzing parallel systems as well
as TM systems.

TM micro-benchmarks [9] use single data structures,
such as hash tables, linked lists and B-trees, to test TM
implementations. These micro-benchmarks are useful for
constructing basic-level insights of TM designs but do not
exhibit different TM characteristics. More importantly, these
benchmarks are not representative of realistic workloads,
thus, they do not provide a comprehensive analysis of TM
systems. In fact, realistic workloads perform operations on
several, more complex data structures at the same time.

SPLASH-2 [30] is a suite of parallel applications that
consists of eight complete applications and four computa-
tional kernels. The applications and the kernels have been
implemented to minimize the time spent inside critical sec-
tions. SPLASH-2 focuses on parallel applications that utilize
little synchronization between threads. SPLASH-2 does not
provide various sizes of critical sections or different conflict
rates because of the high degree of parallelism, hence, the
benchmark suite is not fully capable of evaluating the under-
lying TM systems and discovering interesting transactional
behaviors.

STMBench7 [12] presents an application adapted from
the 007 benchmark [4] to analyze Software Transactional
Memory (STM). STMBench7 provides a coarse-grained
and medium-grained locking implementation in both Java
and C++ that can be compared to their transactified equiv-
alent versions. The benchmark performs complex and dy-
namic operations on a non-trivial data structure. However,
the benchmark relies on the users to mark the critical sec-
tions with annotations that may be error-prone and time-
consuming. STMBench7 performs operations only on large
data structures, thus, it only shows long transactions. This
characteristic is useful for evaluating virtualized transactions
on TM systems. Virtualized transactions [6] are not limited
in terms of execution time, memory footprint and nesting
depth. Virtualization is a challenge for Hardware Trans-
actional Memory (HTM) systems that use small hardware
caches and physical addresses for transaction bookkeeping.

STAMP [18] is a benchmark suite that consists of sev-
eral benchmarks that have various transactional and runtime
behaviors. STAMP provides a sequential and a transactional
version of applications but does not provide the lock-based
versions.

Lee-TM [2] is a benchmark suite based on the Lee’s rout-
ing algorithm and promises longer and realistic workloads.
The benchmarks consist of sequential, coarse-grained and
medium-grained lock-based, transactional and optimized
transactional (with early release) implementations of Lee’s
routing algorithm. Thus, Lee-TM is good for comparing
different locked and transactional implementations. Besides
that, the data structure used in the implementation of Lee’s



routing algorithm is static and all transactions are performed
in two phases with very regular operations. Lee-TM has
very long transactions but the benchmark is still smaller
than STAMP or STMBench7.

The Haskell STM Benchmark suite [24] consists of 10
applications which have different code sizes (small, medium,
large). All the applications in the Haskell STM suite are im-
plemented in the Haskell functional programming language
which allows us to discover different aspects of TM systems.
However, the main problem is that Haskell is not suitable for
HTM and hybrid TM simulation environments in terms of
programming language used and almost all of these applica-
tions are also microbenchmarks.

WormBench [33] is a synthetic transactional application
implemented by Zyulkyarov et al. in C. The inherent fea-
tures of this workload are: it is highly configurable, atomic
blocks are marked by supported language level keywords,
and has coarse grain lock based implementation that serves
as a baseline. By preparing a specific configuration, one can
model the transactional behavior of an already existing par-
allel application or create a runtime scenario that stresses a
particular aspect of the TM system. However, this synthetic
application is useful mostly to mimic existing TM applica-
tions to study or debug their performance issues rather than
discovering these issues and finding the patterns how trans-
actions will be actually used within the emerging transac-
tional applications.

While the current TM benchmarks are certainly useful,
we believe there are further opportunities for developing new
TM benchmarks that would serve as an application testbed
for researchers that are developing solutions for current TM
hot topics such as I/O and nested transactions. RMS-TM
was developed with this goal in mind. Moreover, work-
loads with a wide range of transactional behaviors are re-
quired to avoid skewed evaluations. The TM applications
in RMS-TM benchmark suite have been implemented us-
ing different algorithms and include transactions that con-
sist of many operations on several data structures and dif-
ferent data access patterns. Additionally, they present vary-
ing percentage of time spent inside transactions and vari-
ous abort/commit rates. TM applications with a high abort
rate are good candidates for evaluating TM systems in terms
of live-lock problems. Besides that, TM applications with a
high commit/abort rate are useful to analyze the performance
of lazy and eager data versioning used in TM systems. The
RMS-TM applications have varying sizes of read and write
sets which could help TM designers to decide on the correct
size of the Hardware Transactional Memory (HTM) buffers.
Furthermore, RMS-TM provides different input data sets,
which allows us to explore different transactional behaviors
by changing the size of the data sets.

The closest existing TM benchmark to RMS-TM is
STAMP, which is orthogonal to RMS-TM. STAMP also has
substantial applications with varying abort/commit rates and

small and large transactions. In addition, RMS-TM also has
I/O operations inside transactions and nested transactions,
with some applications spending relatively smaller percent-
age of transactional runtime for small number of cores (but
with the percentage increasing monotonically for higher core
counts - good for many-core TM research), and with some
applications in the with high transactional write/read ratios
while other applications have low write/read ratios.

3. BENCHMARK SUITE OVERVIEW
In this section, we give a high-level overall overview of the
BioBench and MineBench RMS benchmarks. We also pro-
vide an in-depth description of the applications (Hmmer,
Apriori, ScalParC, Utility-Mine) that were eventually se-
lected to be part of the RMS-TM benchmark suite. The se-
lection process of the RMS-TM applications is covered in
Section 4.

3.1 BioBench Benchmark Suite
BioBench [1] is a benchmark suite that consists of bioin-
formatics applications. The applications in the BioBench
benchmarks suite use the Pthread parallel programming
model [3]. These applications perform operations on tex-
tual representations of biological sequences. This behavior
is opposite to the behavior of scientific applications that are
expected to be floating-point intensive.

HMMER [8] is the sequence profile searching pack-
age selected from the BioBench benchmark suite. Hmmer
aligns multiple sequences by using profile Hidden Markov
Models (profile HMMs). Profile HMMs consist of statistical
models of multiple sequence alignments that generally per-
form sensitive database searching. As opposed to homology
searching, which uses either local - Smith/Waterman algo-
rithm [26] - or global - Needleman/Wunsch algorithm [21]
– alignments, Hmmer itself decides on which alignments to
perform while building the model.

The Hmmer package consists of several applications,
each of which has a special task to facilitate sequence profile
searching. Searching an HMM database is the main func-
tionality of Hmmer and is provided with two different ap-
plications: Hmmpfam reads each sequence from a sequence
file and then compares each sequence to all the HMMs to
find significantly similar sequence matches whereas Hmm-
search reads an HMM and searches a sequence database for
significantly similar sequence matches.

In the transactional version, The Hmmsearch’s threads
read the next sequence from an input list of sequence in
parallel and use transactions to protect the accesses to the
input list of sequences. Moreover, the Hmmsearch’s threads
share two score lists ranked by per-sequence scores and
per-domain scores and a histogram of the whole sequnce
stores. Transactions are used to protect update operations on
these two score lists and the histogram.



Application Category Description
Apriori ARM Horizontal database, level-wise mining based on Apriori property
Eclat ARM Vertical database, Lattice transversal techniques used
Utility-Mine ARM Utility-based Association Rule Mining
GeneNet Classification Gene relationship extraction using micro-array-based method
Naive Bayesian Classification Simple statistical classifier
Rsearch Classification RNA sequence search using Context-Free Grammars
ScalParC Classification Decision Tree Classification
SEMPHY Classification Gene sequencing using phylogenetic tree-based method
SNP Classification Hill-climbing search method for DNA dependency extraction
SVM-RFE Classification Gene expression classifier using recursive feature elimination
BIRCH Clustering Hierarchical Clustering method
K-Means Clustering Mean-based data partitioning method
Fuzzy K-Means Clustering Fuzzy logic-based data partitioning method
HOP Clustering Density-based grouping method
PLSA Optimization DNA sequence alignment using Smith-Waterman optimization method

Table 1. Overview of the MineBench Benchmark Suite [20]

3.2 MineBench Benchmark Suite
Data mining is a technique to extract meaningful informa-
tion from vast raw data. Recently, applications that use a
data mining technique have become important in both com-
mercial and scientific areas. Data mining applications can be
categorized into the following: classification, clustering, As-
sociation Rule Mining (ARM), data virtualization, sequence
mining, similarity search and optimization.

The MineBench benchmark suite [20] has been designed
considering the data mining categories that are commonly
used in today’s industry problems and are likely to be used
in the future. This property strongly motivates us to work on
this benchmark suite. As shown in Table 1, the applications
from the classification, clustering, Association Rule Min-
ing (ARM) and optimization (similarity search) categories
represent the heterogeneity of the algorithms and are imple-
mented using OpenMP [5, 22] as the parallel programming
model.

A classification algorithm builds a model to assign un-
classified records in the test dataset to one of several pre-
defined categories or classes. A clustering algorithm parti-
tions the data set into subsets containing elements of similar
properties. Association Rule Mining (ARM) identifies inter-
esting relationships uncovered among the large number of
transactional records. Sequence alignment is one of the most
commonly used technique to perform similarity searching
in bioinformatics. It is typically used to compare one query
nucleotide (DNA or RNA) or a protein sequence against a
database of sequences, and to discover similarities and se-
quence matches.

Apriori [31] is a well-known Association Rule Mining
algorithm performed on transactional records in a database.
Apriori uses downward closure properties (top-down search):
at every iteration, during the candidate generation step, only
the itemsets that meet a minimum support criterion in the
previous iteration generate a new candidate set. Apriori
checks whether all the subsets of the itemset have a required

support value before inserting an itemset into a new can-
didate set. This step is referred to as the pruning step and
is used to eliminate any candidate whose subset include at
least one element with low minimum support. Apriori uses
a hash tree to store candidates. An internal node at depth d
in the hash tree has a hash table which shows the nodes at
depth d+1 while the leaves hold the itemsets. The algorithm
terminates when no itemsets can be added to a candidate set.

Transactions are used to protect the calculation of support
values and the insertion of a candidate itemset into the hash
tree. Since the counts of the itemsets in the hash tree are
common, more than one thread may try to access the counter
value and increment it. For example, a thread travels the hash
tree starting from the root node and hashes on successive
items in the itemsets until it reaches a leaf node. At this
point, thread i may meet another thread which also wants
to increment the itemset.

ScalParC [15] is a parallel formulation of a decision tree
classification. The decision tree model splits the records in
the training set into subsets based on the value of attributes.
This process continues until each record entirely consists of
examples from one class. ScalParC uses a distributed hash
table in the splitting phase of the decision tree algorithm; a
new parallel hashing paradigm has been defined to build and
access this hash table. Due to the parallel hashing paradigm,
ScalParC demonstrates a scalable behavior in both runtime
and memory requirements. During the attributes partitioning
phase, different threads try to simultaneously access a shared
counter, which is used to schedule attributes dynamically.
Transactions protect the access to this shared counter.

Utility-Mine [16] is another ARM technique. A utility
mining model has been developed to identify itemsets with
high utilities. The utility of an item or an itemset can be de-
fined as how useful the item or the itemset is. The utility
mining algorithm consists of two phases: In the first phase, a
“transaction-weighted downward closure property” is used
to generate candidate itemsets on the search space. In the



Application Domain Synchronization Locking type Nested Lock. Func. call Special operations in CSa

Hmmersearch Sequence profile No Coarse-Grained No Yes Large amount of I/O, memory
searching management operations, lib. calls

Hmmerpfam Sequence profile No Coarse-Grained No Yes Large amount of I/O, memory
searching management operations, lib. calls

Apriori Association Rule Yes Coarse-Grained Yes Yes Memory management
Mining Fine-Grained operations

GeneNet Bayesian Network No Fine-Grained No No Memory management
operations

Kmeans Clustering No Fine-Grained No No No
Fuzzy-Kmeans Clustering No Fine-Grained No No No
PLSA Dynamic Programing No Fine-Grained No Yes No
Rsearch Patern Recognition No Fine-Grained No Yes Memory management

Mining operations
ScalParC Classification Yes Coarse-Grained No No No

Fine-Grained
Utility-Mine Association Rule Yes Coarse-Grained Yes Yes Memory management

Mining Fine-Grained operations

a CS: Critical Section

Table 2. Benchmarks in Static Pre-Transactification phase

second phase, the high utility itemsets are defined by scan-
ning the transaction database.

A single common hash tree, shared by all the processors,
stores the candidate itemsets at each level of search as well
as their transaction-weight utilization. In the TM version
included in RMS-TM, transactions protect the update of the
utility of itemset and insertion of a candidate into the tree.

4. THE TRANSACTIFYING PROCESS
The main goal of our study is to define a set of representa-
tive TM benchmarks to cover many different transactional
execution scenarios. In order to characterize the applications
comprehensively, we first determined the set of criteria that
we evaluated during each transactification phase. Then, we
analyzed the applications included in the suites, BioBench
and MineBench, to test whether they are suitable for eval-
uating TM systems with respect to our evaluation criteria.
This process, described in Section 4.1, is referred to as the
pre-transactification phase. Before the pre-transactification
phase, we examined the applications in terms of their pro-
gramming methodology. Candidate applications for our new
benchmark suite should be from the shared memory do-
main, and hence, implemented using an implicit/explicit
lock-based parallel programming model. Consequently, em-
barrassingly parallel as well as serial applications were dis-
carded. The rest of the applications qualified as candidates
to be analyzed in the pre-transactification phase. The ap-
plications that were considered good candidates in the pre-
transactification phase were transactified, as described in
section 4.1, using the Intel C++ compiler with Software
Transactional Memory support in the transactification phase.

4.1 Pre-Transactification Phase
It is crucial to choose the set of applications according to
TM-specific “usefulness” criteria such as nested transac-

tions, various abort/commit rate, irrevocable operations in-
side atomic blocks, etc. To achieve this goal, we analyzed
the RMS application domain and chose only the applications
that are promising from the TM point of view according to
the defined evaluation criteria.

The pre-transactification phase consists of two sub phases:
static and dynamic. Dividing the pre-transactification phase
into two phases helped us to make an effective and a com-
prehensive analysis on the whole application domain. Sev-
eral criteria have been evaluated in each transactification
phase/sub-phase. These evaluation criteria allow us to reduce
the number of applications to be examined in the benchmark
suites and, at the same time, to maintain enough applica-
tions to capture different applications’ characteristics and to
ensure that the evaluation of future TM design is exhaustive.

4.1.1 Static Pre-Transactification Phase
The evaluation criteria used in the static pre-transactification
phase are listed below:

• Synchronization constructs used between lock blocks
such as barriers, wait or join. Alternative synchronization
constructs like barrier could likely cause high contention
since all the transactions attempt to enter the atomic
block (e.g., the barrier) at the same time but only one
will commit.

• The type of locking granularity (fine-grained locking or
coarse-grained locking). Fine/coarse grained critical sec-
tions inside a lock-based application lead to small/large
transactions respectively, i.e., the locking granularity is
related to the transactions’ length.

• Nested locking. Managing read- and write-set is more
complicated with nested transactions because whenever
an inner transaction ends (either commits or aborts), its



Application Number of Threads
1 2 4 8

hmmsearch 0.30 0.36 0.37 0.50
hmmpfam 37.36 36.83 37.86 37.21
Apriori-s 0.01 0.01 0.02 0.02
Apriori-m 0.03 0.05 0.07 0.37
Apriori-l 0.02 0.02 0.04 0.10
PLSA 0.0026 0.0071 0.0077 0.028
Rsearch 0.0001 0.0003 0.0004 0.0004
ScalParC-s 0.05 0.24 0.39 0.14
ScalParC-m 0.04 0.18 0.26 0.11
ScalParC-l 0.02 0.09 0.19 0.27
UtilityMine-r 10.55 10.26 7.94 6.42
UtilityMine-s 64.23 59.04 54.69 52.22
UtilityMine-m 82.99 76.81 69.27 67.72

Table 3. Time in Critical Sect. for Lock-based Apps (in %)

changes may eventually be visible to the outter transac-
tions.

• Function calls between acquiring and releasing locks.
Functions calls inside transactions increase the complex-
ity of the transactions because it is not easy to determine
the length (in terms of execution time) of the transac-
tion at compile time. Some control flow instructions, like
loops, may create the same situation.

• Special operations inside critical sections, such as I/O
operations, library calls or dynamic memory manage-
ment operations (malloc, calloc, free). Some STM com-
pilers may support some or all of those special opera-
tions. For example, the Intel STM compiler supports dy-
namic memory management operations but does not sup-
port I/O operations. On the other hand, at this stage, the
GCC-TM [10] compiler does not support dynamic mem-
ory allocation. All those special operations not supported
by the STM compilers are likely to be marked as irrevo-
cable and create an impact on the STM system perfor-
mance.

Again, the goal of this phase is to select representative
applications that cover all the exploration space with their
properties. So, we did not only select applications that spend
a large amount of time in critical sections, but also applica-
tions that spend a relatively short time in a critical section.
For example, applications that spend only a small amount
of execution time inside critical sections (thus, potentially
inappropriate for TM analysis) are included in the bench-
mark suite if they have other irrelevant properties, such as
I/O operations inside the transactions. Notice that our use-
fulness criteria are not specific to the RMS applications but
are application-agnostic and can be used as a general tool
to determine the applicability of any application to the TM
design.

We discarded embarrassingly parallel and serial appli-
cations even before the pre-transactification phase. Eclat,
Bayesian Network, Birch, Semphy are discarded because
they are serial applications. HOP and SNP are discarded be-
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Figure 1. Scalability of Lock-based Apps (Large Dataset)

cause they are embarrassingly parallel with each thread per-
forming independent operations of the others. In Zambreno
et al. [32] the authors show that SVM-RFE scales poorly
due to redundant locking of memory structures. SVM-RFE
could have a better scalability if the lock could be removed,
hence, SVM-RFE could be a good candidate for TM system
evaluation. However, the application does not use the locks
explicitly in the source code: the locks are used in the Intel
Math Kernel Library while calling the clock function from
this library for time measurements. Therefore, SVM-RFE
was not selected to be analyzed in the pre-transactification
phase. The applications in the MineBench suite are more di-
verse than the ones in the BioBench suite: although different
in size, BioBench applications are mainly from the domain
of gene sequence similarity. Therefore, we selected Hmmer
which is the more popular and representative application
from this domain.

Table 2 shows the evaluation results of the static pre-
transactification phase for the applications that passed the
preliminary evaluation step. The selected applications were
passed to the dynamic pre-transactification phase. Hmmp-
fam and Hmmsearch from the Hmmer package are special
cases: we selected these applications because they exhibit a
large amount of I/O, memory management operations and
relatively complex function calls in critical sections. More-
over, they have an unstructured use of locks. This means that
a lock may be released in several places, depending on the
control flow: this makes transactifying these kind of bench-
marks challenging. However, they show different TM char-
acteristics because the length of transaction changes at run-
time depending on the lock releasing condition. The other
reason to select these applications is that the benchmarks are
implemented with coarse-grained locking and they present a
large number of instructions in the critical sections. In fact,
applications that have a coarse-grained locking structure are
good candidates for our study because the coarse-grained
lock-based programming causes threads to waste a signif-
icantly high amount of time in the synchronization part of



the application; Minimizing this synchronization time is an
important topic for TM research.

Although Apriori and Utility-Mine are in the same do-
main, they both satisfy other evaluation criteria (see Table 2).
The reason to select ScalParC is that the benchmark comes
from a different application domain. In particular, Scal-
ParC includes both fine-grained and coarse-grained locking,
meaning that it has different types and sizes of transactions.
In addition, ScalParC, Apriori and Utility-Mine use syn-
chronization constructs between lock blocks as shown in
Figure 2. We expected that the placement of synchroniza-
tion constructs between lock blocks could create interesting
TM characteristics such as a somewhat high abort rate even
when the application does not spend much of its execution
time in transactions.
atomic{

statement1

}

#pragma omp barrier

atomic{

statement2

}

Figure 2. Usage of Synchronization constructs

PLSA and Rsearch are the other two applications that
passed the static pre-transactification evaluation step. Be-
sides being from a different application domain, they have
function call(s) inside critical sections. Calling function(s)
within atomic blocks makes it difficult to statically deter-
mine how long transactions and their read/write sets are.
Moreover, Rsearch performs memory management opera-
tions in critical sections. As we mentioned in section 4.1.1,
not all the avaliable STM compilers support dynamic mem-
ory allocation inside critical sections. In these cases, those
operations are marked as irrevocable operations.

Kmeans and Fuzzy Kmeans are clustering applications in
the same package. They are very small applications that do
not present nested locking, function call or irrevocable op-
erations inside critical sections, as well as synchronization
constructs between lock blocks. We discarded these applica-
tions from our benchmark suite.

Although GeneNet is a realistic and comprehensive ap-
plication, it has small critical sections with few memory
operations and no function calls. Therefore, GeneNet was
not selected as a candidate for dynamic pre-transactification
phase.

4.1.2 Dynamic Pre-Transactification Phase
In the dynamic pre-transactification phase, we used scala-
bility (shown in Figure 1) and time spent within critical sec-
tions (shown in Table 3) as evaluation creteria. To measure
the time spent inside critical sections, we instrumented the
applications that had passed the static pre-transactification
phase successfully. Most applications in the original bench-
mark suites, have been carefully implemented by expert pro-
grammers to achieve the highest parallelism. While this is,

in general, a desirable property, the resulting small criti-
cal sections translate into TM programs with small transac-
tions. Due to the short transaction length and the low trans-
action frequency or the small size of read and write set,
those applications are unable to stress the underlying TM
systems. PLSA and Rsearch follow this class of applications
which means they spend a slightly short time within crit-
ical sections. These results confirm our claim in the static
pre-transactification phase, thus, we discarded them in the
dynamic pre-transactification phase. Even though ScalParc
and Apriori spend a short time inside critical sections, they
have several marked atomic blocks and use synchroniza-
tion constructs, such as barriers between consecutive atomic
blocks. We believe that these characteristics could result in
quite interesting TM behaviors such as high abort rate.

Apriori and Utility-Mine have a high level of nested lock-
ing built by recursive function calls as shown in Figure 3.
As mentioned before, an insertion of a candidate itemset is
enclosed in a transaction. At the insertion point, if the num-
ber of itemsets at a leaf node exceeds a threshold value, that
leaf is converted into an internal node by the rehash func-
tion. Their nested depth reaches up to 9, depending on the
data set size. As a result, Utility-Mine and Apriori are good
TM benchmarks to evaluate the TM systems with support
for arbitrary levels of nested transactions.

rehash()

{

add_element_to_hash();

}

add_element_to_hash()

{

atomic{

if (numitems > threshold)

rehash();

}

}

Figure 3. Nested locking

In the Hmmer sequence profile searching package, we se-
lected hmmsearch even if it spends a short time inside crit-
ical sections. However, this application scales better than
hmmpfam, as shown in Figure 1. The figure shows that
only hmmsearch presents a linear speedup, the other bench-
marks have a sub-linear speedup. Hmmpfam is dominated
by I/O operations and essentially behaves like a serial ap-
plication; Apriori, ScalParC and Utility-Mine scale well ex-
cept when they run on 8 threads in parallel (all the avail-
able processors in our experimental setup) especially with
small or medium data sets. In this case the speedup is smaller
(or much smaller, as for ScalParC) than the speedup with
4 threads. The reason for the performance loss on some of
the applications is not related to accessing shared data struc-
tures. In [17] the authors conclude that load balancing and
Operating System (OS) noise are the main culprits for the
limited speedup of certain. Load balancing (or data load bal-



Application Thread Number
1 2 4 8

hmmsearch 0.44 0.51 0.54 0.67
TM-Apriori-s 0.01 0.02 0.03 0.36
TM-Apriori-m 0.13 0.18 0.25 0.43
TM-Apriori-l 0.06 0.09 0.13 0.31
TM-ScalParC-s 0.10 0.38 1.22 2.75
TM-ScalParC-m 0.07 0.28 0.79 2.31
TM-ScalParC-l 0.04 0.13 0.57 3.90
TM-UtilityMine-r 66.89 68.42 65.6 61.52
TM-UtilityMine-s 97.36 97.19 97.19 97.14
TM-UtilityMine-m 97.96 98.75 98.85 98.88

Table 4. Time in Atomic Block for TM-based apps (in %)

ancing) is a common problem with Single Program/Multiple
Data (SPMD) parallel applications.

In SPMD applications, each thread executes the same op-
eration on its portion of the data set and then reaches the syn-
chronization point. If the amount of data that each thread’s
process loads is not balanced, threads with a larger amount
of data to process will reach the synchronization point af-
ter the other less-loaded threads, actually limiting the per-
formance of the parallel applications, no matter how many
processors are used. OS noise [25, 27, 11] appears when the
OS needs to perform some operations and temporarily re-
moves one of more threads of the parallel application from
their CPUs. At the end of the system activity, the thread is
rescheduled for execution by the OS but the delay introduced
by the OS will reduce the performance of the whole appli-
cation. In fact, no matter how well balanced the load is, if
one thread suffers from OS noise, it will reach the synchro-
nization point after the others, becoming the bottleneck of
the entire application. If the parallel application is not us-
ing all the available processors in the system, the OS tries
to schedule system activities on the free CPUs. On the other
hand, if the application is using all the available processors
(8 in our case), the OS has no choice but to stop one or more
threads and resume their execution after the system activi-
ties have completed. As a result, both data load balancing
and OS noise may cause performance degradation especially
when using a large number of threads.

4.2 Transactification Phase and Challenges
In this section, we describe how to transactify lock-based ap-
plications considering the programming effort. We also iden-
tify the challenges faced during the transactification phase.
Transactifying applications from their equivalent lock-based
versions was not a straightforward task because each appli-
cation has a different structure. We first analyzed each ap-
plication to understand the parallelization strategy and the
use of locks for synchronizations. In order to maintain the
original semantics of applications we kept the size of the
atomic blocks as the ones in the lock-based versions during
the transactification phase.
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Figure 4. Scalability of TM-based Applications (Large
Dataset)

To transactify the applications selected as good candi-
dates in the pre-transactification phase, we replaced locks
used to protect the accesses to shared variables with transac-
tions using a prototype of the Intel C/C++ compiler with
STM support. Intel STM compiler provides simple lan-
guage extension to develop TM applications. However, to
apply the transactional semantics to the functions inside
atomic blocks, the functions should be marked as either
TM-callable2 or TM-pure3. If other kind of functions are
called inside the atomic block, the compiler might make the
transactions run irrevocably.

The applications we examined often allocate objects
and/or call external functions inside atomic blocks. The
objects are allocated through the new operator which, in
this version of the Intel STM compiler, appears not to be
marked as TM-callable. The new operator, in turn, calls
the object constructor but, at this point, the transaction will
run irrevocably even if the object constuctor is marked
as TM-callable. This happens because the first function
called inside the transaction (the new operator) is not marked
as TM-callable.

In order to deal with this challenge and avoid the transac-
tions to run irrevocably, we overloaded the new operator and
marked it as TM-callable. The Intel STM compiler gener-
ates a TM-clone version of the TM-callable function and
allows the user to safely call this function inside an atomic
section. In this specific case, whenever the new opearator is
called inside an atomic block, the application calls the over-
loaded operator (marked as TM-callable), instead of the
standard one (not marked as TM-callable).

Other challenges concern acquiring and releasing locks
in an unstructured way, meaning that locks can be released
in more than one point in the source code. Transactifying an

2 Compiler generates a clone of function annotated as TM callable

and translate each memory read and write to a TM read barrier

function and a TM write barrier function
3 A programmer guarantes that a function marked as TM-pure does not
access shared variables when it calls inside transactions.



application with an unstructured lock structure is not easy
because there is syntax difference between locking program-
ming and TM programming with the Intel STM compiler. To
deal with this challenge, we used the same technique used by
[34, 18].

5. EXPERIMENTAL RESULTS
In this section we compare the applications in RMS-TM to
their equivalent lock-based versions and show how the se-
lected applications cover all the characteristics of the TM
systems. We report our experimental results for scalability,
time spent in atomic sections and transaction abort and com-
mit rates. In the experiments, we report the average results of
five running executions using three different data set sizes:
Small (s), Medium (m) and Large (l) for Apriori and Scal-
ParC; Real (r), Synthetic Small (s) and Synthetic Medium
(m) for UtilityMine.

We performed our experiments on Dell PE6850 worksta-
tion with 4 dual core x64 Intel Xeon processors runing at
3.2Ghz equiped with 32KB IL1 and 32KB DL1 private per
core, 4MB L2 shared between the two cores on die, 8MB
L3 shared between all cores, and 32GB RAM. The installed
operating system was SUSE 11.0.

Figure 4 shows the scalability of the applications. All the
TM applications (except Utility-Mine) present a scalability
similar to their equivalent lock-based versions. Several fac-
tors may influence the scalability of Utility-Mine: for exam-
ple, the number of aborted transactions, which is, arguably,
the most common reason for poor scalability. As seen in Ta-
ble 5, although Utility-Mine has a low abort rate, the bench-
mark presents a large number of transactions, each one with
large read/write sets. This means that every rollback oper-
ation is expensive (i.e. the cost of each rollback depends
on the amount of data, not on the number of rollbacks),
thus, affecting performance. To understand another impact
on the performance loss, we performed a deeper analysis of
all the applications using the oprofile [23] system profiler
and looked at specific performance counters. Unlike all the
other applications, Utility-Mine has large read- and write-
sets; this causes more accesses to memory and, therefore,
more L2 cache misses. In fact, we notice that, when run-
ning this benchmark, more then 90% of the L2 cache misses
are caused by the Intel STM library when accessing the
read- and write-sets of the application. This extra overhead is
larger as the sizes of the read- and write- sets increase, thus,
it limits the scalability of the application. However, having
large read- and write-sets is a good property for a TM bench-
mark since this property enables researchers to evaluate TM
systems with support for virtualized transactions. This is in
agreement with what is stated in [34]. In general, however,
we experience that TM does not significantly influence the
scalability.

Table 4 presents the time spent in atomic blocks with re-
spect to the total execution time with 1, 2, 4 and 8 threads

for each data set. We expected to have some overhead in-
troduced by the Intel STM compiler and run-time library
because of the extra work required by the STM system to
handle transactions, for example, when detecting conflicts.
Moreover, as we can see comparing Table 3 to Table 4, the
Intel STM mechanism introduces different overheads in the
transactified versions of the benchmarks. For example, the
lock version of TM-Apriori-m spends 0.37% of the time in-
side critical sections and 0.47% in the transactified version.
On the other hand, Utility-Mine-r spends 6.42% of its time
in critical section with the lock implementation and 61.52%
with the TM implementation. Rollback on abort is a ma-
jor source of performance overhead in the TM-Utility-Mine
benchmark because the benchmark, with 8 threads, spends
66% of its total atomic time for wasted work [24]. As we’ve
already explained, this increment is not only caused by roll-
backs but also by the larger number of L2 cache misses in-
troduced by the read- and write-sets. Looking at Table 4, we
can see that the selected benchmarks cover a wide range of
cases in terms of time spent inside atomic blocks. This va-
riety is a desirable property for a TM benchmark suite be-
cause it allows researchers to evaluate TM systems using
both applications that are very sensitive to TM overhead (like
TM-UtilityMine-r), and an application that is not sensitive to
the TM systems’ overhead (TM-Apriori-m). Notice that TM-
UtilityMine spends most of its execution time inside critical
sections, which is important for analyzing TM systems with
support for virtualized transactions.

Table 5 summarizes the transactional characteristics of
the RMS-TM applications. As we can see from the table,
the RMS-TM benchmark suite explores several combina-
tions: small read/write sets (short transactions) with a high
abort rate (TM-Apriori); large read/write sets (long trans-
actions) with a limited abort rate (TM-Utility-Mine); small
read/write set with medium abort rate (TM-ScalParC), etc.
Our experiments confirm what we observed in the static pre-
transactification phase: for example, TM-Apriori and TM-
ScalParC access shared counters inside the atomic blocks
and use points of synchronization, which results in threads
to enter a transaction at the same time, leading to increased
contention among threads. Therefore, those two applications
have high contention, even if they spend most of their exe-
cution time outside atomic blocks. From this analysis, we
can conclude that TM-Utility-Mine (high commit rate), TM-
Apriori and TM-ScalParC (high abort rate) are good candi-
dates for the evaluation of both lazy and eager data version-
ing. According to [13, 19], high commit/abort rates have
a large impact on the performance of eager/lazy data ver-
sioning in hardware TM systems. This happens because ea-
ger data versioning relies on the idea that the commit rate
is higher than the abort rate in TM benchmarks. Therefore,
these systems are designed with a low commit cost. On the
contrary, in hardware TM systems with lazy data versioning,
the abort cost is significantly lower than the commit cost.



Application Read Set (in bytes) Write Set (in bytes) Transactions
Min Avg Max Total Min Avg Max Total #Commit #Abort Abort %

hmmersearch 12 30 76 9,208K 0 2 4 613K 306,658 0 0
TM-Apriori-s 20 153 1,448 10K 2 89 697 6K 70 85 54
TM-Apriori-m 20 461 19,128 6,580K 0 296 10,356 4,228K 14,264 32,990 69
TM-Apriori-l 20 455 18,163 6,577K 0 291 7,920 4,213K 14,439 33,520 69
TM-ScalParc-s 28 99 2,924 4,976K 1 6 204 322K 50,236 44,882 47
TM-ScalParc-m 28 103 3,647 7,725K 1 6 252 503K 74,544 72,680 49
TM-ScalParc-l 28 115 3,650 8,689K 1 7 249 568K 75,408 89,280 54
TM-UtilityMine-r 20 2,409 235,674 10,913,794K 4 6 364 30,390K 4,529,132 261,502 5
TM-UtilityMine-s 44 9,033 837,661 394,986,059K 4 7 247 321,696K 43,724,391 425,827 1
TM-UtilityMine-m 20 14,303 2,414,583 5,655,782,175K 1 7 1716 3,006,263K 395,425,752 3,580,362 1

Table 5. Transactional Behavior of TM Benchmarks with 8 threads

For software TM systems, there is no evidence about
whether commit and abort rates are important metrics to ana-
lyze the performance of eager/lazy data versioning systems.
In order to allow researchers to perform an exhaustive study
of software TM systems, RMS-TM covers both high and low
commit rates.

TM-Hmmsearch has irrevocable operations, such as I/O
operations inside the atomic blocks; in this case, the Intel
STM compiler generates irrevocable transactions and, as a
result, the benchmark has no aborted transactions. We are
currently working on this challenge and we plan to propose
a solution as future work.

Another useful TM characteristic is the write-set/read-
set size ratio. The higher the ratio, the more the probability
of conflicts. RMS-TM applications have low (TM-Utility-
Mine), medium (TM-ScalParC) and high (TM-Apriori) write-
set/readset ratios.

6. Conclusions
Transactional Memory (TM) is a new concurrency control
mechanism that promises to ease CMP parallel program-
ming while providing reasonable performance and scalabil-
ity. Several TM systems (Hardware, Software and Hybrid)
have been proposed in previous work. However, most of
those proposals have been tested on simulators and there is
no agreement on what are the important and representative
TM benchmarks to run in order to thoroughly explore them.

In this paper we present RMS-TM; a new TM benchmark
suite that includes scalable future CMP workloads from the
Recognition, Mining and Synthesis domain. We develop a
general methodology to select the best candidate applica-
tions for a TM-benchmark suite. In our methodology, we
first highlight the desirable characteristics of a TM bench-
mark suite and define the criteria that can be used to select
well representative applications for studying TM systems.
Then we analyze the current TM benchmarks from the RMS
domain and select the ones that satisfies our criteria (pre-
transactification phase). Once the benchmarks had been se-
lected, we transactified them using the Intel STM compiler.
In this phase, (transactification phase) we faced and solved
several challenges and reported the effort required by a pro-

grammer to transactify parallel applications. This contribu-
tion is important because it is always hard to quantify the
programmer effort and to identify the challenges that must
be solved in order to transactify an application. We hope that
our experience will be helpful to other TM programmers.

Our experiments show that the transactified RMS-TM
applications have very good scalability and are, thus, good
candidates for extending TM research to many-core CMPs.

7. Future Work
As future work, we plan to port the RMS-TM applications
to other STMs and to selected HTMs such as Log-TM and
TCC. In time, other RMS benchmarks such as BioParallel
might be analyzed and more applications might be added to
the RMS-TM suite. Finally, we believe that parallelization
of the existing sequential applications in the RMS domain
using TM might be valuable to understand programmability
aspects of TM.
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