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Abstract
Transactional memory (TM) is expected to become a widely
used parallel programming paradigm for multi-core archi-
tectures. To reach this goal, we need tools that do not only
help develop TMs, but also test them and evaluate them on a
wide range of workloads. In this paper, we introduce a novel
tool, TMUNIT, to assist researchers in designing and opti-
mizing TMs. TMUNIT provides a domain-specific language
for specifying workloads, and tests the performance and se-
mantics of TMs. TMUNIT is freely available online. It comes
with a test suite that compares the performance of TMs and
explain their differences using semantics tests that outlines
behavioral characteristics.

1. Introduction
The transactional memory (TM) paradigm is appealing for
programming parallel applications thanks to its simplicity.
This paradigm supersedes the existing lock-based paradigm
in two ways. First, it allows more concurrency than coarse-
grained locking strategies. Second, it composes well as op-
posed to fine-grained locking, and is much less error-prone.
Our aim is here to assist TM developers and users in testing
both performance and semantics of TM implementations.

For the past few years, researchers from industry and
academia have devoted many efforts on studying transac-
tional memory semantics and highlighting important open
questions, such as: how should a transaction behave in pres-
ence of concurrent non-transactional accesses (in a weak-
atomicity model) [1], should a transaction abort even though
its commit would not violate consistency [7], or what re-
sult could we expect from a TM implementation when the
memory model of the application language relaxes the pro-
gram order of the code running on each thread [15]. These
questions outline the essential role of specific interleavings
of conflicting operations in transactions. Various examples
have been described as code fragments that expose anoma-
lies when transactional operations are executed in a certain
order [1, 7, 9, 15, 18, 20].

There is a crucial need to evaluate the semantics of trans-
actional memory in these specific circumstances. Evaluat-
ing a transactional memory can help TM developers analyze

the behavior of their implementation and identify bugs, but
it may also help TM users test their application workload
on specific TM implementations with an associated mem-
ory model. The only existing testing tools for transactional
memory target step-by-step debugging [13] or safety verifi-
cation [14]. To the best of our knowledge, no tool can per-
form comprehensive semantic tests of a TM.

Testing parallel programs in a reproducible manner is not
an easy problem. One might think of recording the events
of the execution at run-time to replay them later on. Unfor-
tunately, such recording may directly affect the way events
are interleaved. The impact is even more significant in trans-
actional memory where threads communicate faster than in
message passing model. Typically, it would be desirable to
test the performance and semantics of a TM using unit tests.

Initially: x=0, y=0
Thread 1 Thread 2
atomic {
x=1;

y=x;
x=2;

}

Definitions: x = 0; y = 0;
Transactions: T := W(x,1), @L, W(x,2);
Schedules: S := T@L, { y=x }, T;
Invariants: [y != 1];

Figure 1: Dirty read test: a simple pathological scenario that may lead to
dirty read (y = 1) on the left-hand side, and the corresponding specifi-
cation to test if the TM avoids the dirty read on the right-hand side. Note
that y = x is executed outside transactions and we define a label @L in
transaction T to specify the interleaving of operations in the schedule S.

Consider, for instance, the well-known problem of dirty
reads. On the left-hand side of Figure 1, the first thread ex-
ecutes a transaction (represented as an atomic block) that
updates the same location x twice while the second thread
concurrently reads location x. Since the transaction should
appear as if it were executed atomically, it should not be
possible to have y = 1. This would correspond to a dirty
read of location x by the second thread. Observe that, when
both threads execute in parallel, some interleavings of oper-
ations may never produce dirty reads. To test appropriately
that a given TM avoids this problem, we propose, on the
right-hand side of Figure 1, the specification of a dirty read
unit test. The interleaving of the transactions is defined in a
schedule that enforces the read operation of x by the second
thread to occur between the two atomic write operations of
the first thread. The invariant checks whether a dirty read oc-
curs in this specific schedule. Such a unit test language spec-



ification is of crucial importance for testing TM behaviors
in particular situations, notably in scenarios with concurrent
transactional and non-transactional accesses.

In this paper, we propose TMUNIT, a novel tool that can
help transactional memory researchers evaluate the seman-
tics, validate the implementation, and improve the perfor-
mance of TMs.

Related work. We distinguish two major groups of exper-
imental evaluations for TMs: performance evaluation and
semantic evaluation (debugging/testing/verification). The
biggest challenge for performance evaluation of TMs is to
propose benchmarks that are (i) precise enough to emphasize
TM characteristics, but also (ii) realistic enough to match the
behavior of common applications.

To achieve these goals, many authors [3, 6, 12] evalu-
ate performance of TMs using micro-benchmarks that ac-
cess simple data structures, such as linked lists or red-black
trees. However, more elaborate and configurable evaluation
frameworks were proposed. STMBench7 [10] presents such
a framework composed of a complex data structure and up-
date/traversal primitives on this data structure. Wormbench
[21] aims at representing applications by a series of complex
atomic operations, but it does not allow operation interleav-
ings to be controlled by the user.

Some other studies put more stress on realistic work-
loads. The major framework in this direction is STAMP [16].
There is also the Haskell benchmark suite [17] which is a
mixture of micro-benchmarks and some real world applica-
tions. While those studies are invaluable to assess TM per-
formance, they are limited by the number and type of bench-
marks.

For the semantic evaluation of TMs we see mainly two
types of studies. The first type of studies (e.g., [14]) perform
non-deterministic execution of randomized workloads and
verify their correctness post-execution. The second type of
studies (e.g., [13]) mainly studies the debugging of TMs.

Contributions. We have designed a tool, TMUNIT, that
provides a domain-specific language dedicated to TM work-
loads. This language aims at being simple and expressive. It
allows users to rapidly specify benchmarks to evaluate and
compare TMs, as well as unit tests to validate the behavior of
a specific implementation. Like other TM evaluation frame-
works, TMUNIT runs a given TM on some, possibly ran-
domized, workload and records the performance statistics.
The specified benchmarks can be executed by dynamically
interpreting the workload specification and mapping trans-
actional accesses to an underlying TM, or for best perfor-
mance, by generating a corresponding program to be com-
piled into a standalone application.

TMUNIT has been successfully tested on five word-based
TM implementations:1 WSTM [11], TinySTM [6], TL2 [3],

1 While we use the term “TM” for generality, we only consider here soft-
ware transactional memories (STMs).

RSTM [2], and SwissTM [4]. The results we obtained from
TMUNIT indicate that TM performance relies tightly on the
chosen workload and may vary drastically. TMUNIT seman-
tic tests revealed interesting insights into the implementation
of the TMs, notably that WSTM violates opacity [9] unless
explicit validation is performed by the programmer.

We believe that TMUNIT will be helpful not only for
TM developers to validate and improve performance of
their TM, but also for TM users to choose the most ef-
ficient TM support for their specific application work-
load. The current release of TMUNIT can be found at
http://www.tmware.org/tmunit.

Roadmap. In Section 2, we present the architecture of
TMUNIT. In Section 3, we describe our domain-specific
language and give some examples. Sections 4 and 5 test,
respectively, the semantics and the performance of the TMs.
Finally, Section 6 concludes the paper.

2. TMUNIT Architecture
In this section, we briefly describe the main components of
TMUNIT and explain how they interact (see Figure 2).

As mentioned earlier, TMUNIT executes a workload on
a dedicated TM. This workload corresponds to a synthetic
description written in a domain-specific language (see Sec-
tion 3). TMUNIT can either execute this workload dynam-
ically or convert it into a compiled application to reduce
the runtime overheads. TMUNIT also records performance
statistics and test results.

TMUNITSynthetic
description

Transactional
trace

Input language parser

Dynamic 
automaton

Generated 
automaton

C code

Execution
Statistics

& logs

Abstract TM interface

TinySTM TL2 Other
STM...

Figure 2: Architectural overview of TMUNIT.

More precisely, a test is modeled as an automaton per-
forming transactional operation calls to an TM implementa-
tion. TMUNIT uses an abstract TM interface to map transac-
tions onto the underlying TM. TMUNIT can use two differ-
ent automata: an interpreted automaton or a generated au-
tomaton. The interpreted automaton is produced when the
configuration file representing the test specification is dy-
namically interpreted for direct execution. The generated au-



tomaton is produced when the configuration file is translated
to a different programming language.

Currently, the generated automaton only produces C code
for word-based TM implementations. While the interpreted
automaton can be used to interpret and execute the config-
uration file in a one-step process, the generated automaton
executes more efficiently, as shown later in Section 5. In
contrast, the interpreted automaton is more convenient for
execution of simple unit tests, e.g., when testing TM seman-
tics. The decision of the execution mode is taken by the user.
Either automaton may output a trace of the execution and
detailed performance statistics.

3. A Language for TM Workloads
Evaluating TMs requires to test their behavior not only in
response of minimal workloads (by unit testing) but also
in response of more complex workloads (by performance
testing). In this section, we give a high level description of
TMUNIT’s generic language to specify TM workloads.

The language has been designed to be simple enough
to specify transactions and schedules in an abstract way as
usually found in academic papers (i.e., using sequence of
reads and writes on variables), and expressive enough to
reproduce classical transactional benchmarks like operations
on linked lists.

1 T1 := R(x), R(y), W(x), W(y); // R = read, W = write
2 T2 := R(x,_a), R(y,_b), W(x,_a−10), W(y,_b+10); // _a, _b = thread locals

Listing 1: Two sample transactions.

Listing 1 illustrates how simple it is to specify basic
workloads. The first transaction, T1, reads two memory loca-
tions before updating them (note that transaction beginning
and commit are implicit). Memory locations are designated
by symbolic addresses that will be mapped to shared mem-
ory by TMUNIT. Here we are not interested in the value read
or written, i.e., we are only interested in possible conflicts.
In contrast, T2 stores the values read in local variables and
writes updated values to shared memory, similar to a transfer
between bank accounts. One can specify far more sophisti-
cated behavior in transactions, as will be discussed next.

A workload (unit test or performance test) is written as a
configuration file divided into six sections:
1. The properties section presents the execution settings and

parameters.
2. The definitions section specifies the variables and con-

stants.
3. The transactions section defines the operations that com-

pose each transaction, using a simple but sufficiently
powerful language.

4. The threads section specifies each thread as a transaction
pattern.

5. The schedules section describes specific executions with
a pre-determined interleaving of operations.

6. The invariants section specifies assertions that must be
valid at each step of a schedule.

3.1 Unit test specification
A unit test refers to a simple reproducible test that exercises
a specific aspect of the TM implementation, e.g., whether
a read-after-write returns the last value written or whether
dirty reads do not occur. Unit tests are generally used for
the sake of integration following a bottom-up approach [5].
Here, we consider a specific kind of unit tests especially
suited for TMs: they represent a deterministic scenario of
a parallel execution.

As motivated in the introduction, there is a crucial need
for unit testing TMs to outline problems due to certain in-
terleavings of conflicting operations. Listing 2 illustrates our
domain-specific language on the zombie transactions exam-
ple of [1].2 The write to z by T2 on Line 6 is dead code un-
der single-lock semantics and should not happen. However,
some TM implementations with eager update might perform
the write and undo it later, causing the assertion to fail. Such
a unit test can help determining whether the TM provides
single global lock atomicity.

1 Definitions: // variables and constants
2 y = 0; x = 0; z = 0; // shared variables, initially all 0
3

4 Transactions: // specification of transactions
5 T1 := W(x,1), @L1, W(y,1); // W = write, @L1 = label
6 T2 := {? [ R(x) != R(y) ] : W(z,1) }; // R = read, {?:} = if statement
7

8 Schedules: // specification of schedules
9 S := T1@L1, T2, T1; // execute T1 until L1, then T2, finish T1

10

11 Invariants: // invariants to fulfill
12 [z != 1]; // unprotected read of z

Listing 2: Unit test for zombie transactions [1].

Operations and transactions. We assume a single address
space of bounded size. Threads can only communicate by
writing to, and reading from, the shared address space. We
denote reads by R and writes by W. These two operations can
only be applied to shared memory variables.

Variables are defined in the definitions section and are ei-
ther integers (of the size of a memory word) or arrays of
integers. Undeclared variables are assumed to be integers.
One can also use thread-local variables for specifying com-
plex patterns in transactions such as loops or conditionals.
Their name must start by an underscore symbol ‘_’ and is
scoped at the level of the transaction (they can be referred to
as <tx-name>:<var> to avoid ambiguity). The initial value
of a variable can be set in the definition section. Variables
that are not explicitly initialized are set to 0. Variable names
with only capital letters are considered as constants and their
value cannot be modified.

2 We have actually reproduced the (equivalent) variant of the zombie trans-
actions example as sent by Dan Grossman on the tm-languages mailing list
on July 1, 2008.



A read operation accesses a shared variable, or an en-
try in a shared array. The read operation returns the con-
tent of the shared variable as provided by the underlying
TM. The result can optionally be recorded in a thread-local
variable. We denote this by R(<sh-var>) or R(<sh-var>,
<loc-var>). Similarly, a write operation accesses a shared
variable W(<sh-var>) to write a value that can be option-
ally specified W(<sh-var>, <val>). Write operations are
performed by the underlying TM. We refer to shared variable
accesses via read and write operations as protected accesses,
and to direct shared variable accesses (e.g., x = 0) as unpro-
tected accesses. TMUNIT supports arithmetic expressions
involving numbers, variables, random values, arithmetic op-
erators, and parentheses that yield an integer value. Evalua-
tion follows the usual operator priorities.

Each transaction is given a unique name and represents a
finite sequence of operations, delimited by commas, implic-
itly started by a “begin” statement and ended by a “commit”.
It is possible to explicitly abort a transaction by using no-
tation A to implement sophisticated test scenarios. Inside a
transaction and between operations, labels can be specified
by @<label> and local variables can be assigned values. In
Listing 2, T1 contains two operations (Line 5) while T2 con-
tains one operation and an if statement with two operations
(Line 6). Label @L1 is used in T1’s definition as a marker for
specifying the schedule as explained below.

Schedules and assertions. Schedules specify a pre-defined
interleaving of the transactions for testing or debugging a
TM. They are defined in the schedules section and they spec-
ify the execution order of the transactions operations using
<tx-name>@<label> to indicate that <tx-name> executes
alone until label @<label>. If no label is specified, the trans-
action executes until the end. Note that each transaction ex-
ecutes in its own thread, but only one thread is active at each
step of the schedule. Multiple schedules can be specified but
only one will be executed at a time; this schedule can be
specified using command-line parameters.

Invariants and assertions define tests that the execution
must pass. Assertions are boolean expressions and can be
specified in transactions or schedules as [<bool-expr>].
Invariants are assertions that are automatically evaluated at
each step of a schedule. If an assertion evaluates to false or
if an invariant is violated during the execution, then the test
fails. The program prints an error message.

The evaluation context of variables within boolean ex-
pressions used in assertions and invariants are as follows:

◦ Local variables are evaluated in the context of the trans-
action they are used in.

◦ Unprotected accesses, like [z != 1] (Line 12 of List-
ing 2), are evaluated by directly reading the memory lo-
cation, i.e., without using the underlying TM.

◦ Protected accesses, like [R(x) != 1], evaluate in a ded-
icated transaction that performs only the protected access.

In schedule execution mode TMUNIT creates a thread per
each defined transaction and an additional scheduler thread.
It is the scheduler thread which performs the switching be-
tween threads thanks to the barriers that correspond to the
labels in the transaction definitions. There are also two ad-
ditional barriers; one is used only for the scheduler and the
other is an initial common barrier for the all the threads ex-
cept the scheduler. The barriers are used to pass a token be-
tween the threads and at a given time there is only one thread
that owns the token. Initially, the scheduler thread owns the
token and it passes the token to the the first scheduled trans-
action. The thread owning the token executes until the next
barrier it encounters (if there is none it executes until the
end of the corresponding transaction) and then passes the to-
ken back to the scheduler thread. Upon receipt the scheduler
thread passes the token to the next scheduled transaction’s
thread. This continues until the end of the defined schedule.

An example schedule for the “zombie transactions” sce-
nario [1] is presented at Line 9 of Listing 2. In this schedule,
transaction T1 executes up to label L1, and then transaction
T2 runs before T1 resumes. As a result, this schedule forces
T2 to read x between the two writes of T1. If T2 reads a dirty
value 1, it will update z (Line 6) and the invariant (Line 12)
will be violated, leading to the failure of the test.

3.2 Performance test specification
Performance tests are generally longer than unit tests since
they execute complex schedules to measure the performance
of a TM. More precisely, they use randomization and loops
to test a large set of schedules. Here, we present additional
language features on a slightly more complex example that
corresponds to the complete specification of a widely used
micro-benchmark: a sorted linked list (see Listing 3).

Randomness and loops. To implement realistic perfor-
mance tests, our language provides powerful constructs such
as random executions and loops. Randomness allows users
to run a set of patterns non-deterministically while loops can
repeat the same pattern multiple times. Randomness is pro-
vided by special constructs <min..max> that evaluate to an
integer value chosen uniformly at random between min and
max (inclusive). This random expression notation can appear
everywhere a number is expected. For instance in Listing 3,
constant NB at Line 9 represents an arbitrary element of a
linked list of size 4096. Note that “random constants” are
evaluated once at the beginning of each transaction, i.e., they
get a different, immutable value for every transaction execu-
tion.

Transactions may include loops that repeat a predeter-
mined number of times and loops that execute until a con-
ditions becomes true. The former type of loop is illustrated
in Listing 3 Line 14, where transaction T1 repeatedly reads
addresses representing nodes in the linked list (each node
has two data items: a value and a pointer to the next node).
This transaction mimics the search for a random element in



1 Properties: // global properties
2 RandomSeed = 1; // use random seed for RNG
3 ReadOnlyHint = 1; // tag read−only transactions
4 Timeout = 10∗1000∗1000; // maximum test duration (us)
5

6 Definitions: // variables and constants
7 SIZE = 4096; // size of the list (constant)
8 m[0 .. 2∗SIZE+1] = 0; // memory range for list nodes
9 NB = <1 .. SIZE>; // random value (constant) in range 1. . .SIZE

10 T2:_f = 0; // flag to alternate between adds and removes
11 T2:_v = 0; // position of last added value
12

13 Transactions: // specification of transactions
14 T1 := {# k = [0 .. NB−1] : R(m[2∗k]), R(m[2∗k+1]) }, // T1: search element
15 R(m[2∗NB]) ;
16 T2 := {? [_f == 0] : // T2: add/remove element
17 {# k = [0 .. NB−1] : R(m[2∗k]), R(m[2∗k+1]) }, // add element
18 R(m[2∗NB]), W(m[2∗NB−1]),
19 { _f = 1, _v = NB }
20 |
21 {# k = [0 .. _v−1] : R(m[2∗k]), R(m[2∗k+1]) }, // remove element
22 R(m[2∗_v]), R(m[2∗_v+1]),
23 W(m[2∗_v−1]), W(m[2∗_v]), W(m[2∗_v+1]),
24 { _f = 0 }
25 } ;
26

27 Threads: // specification of threads
28 P1, P2 := < T1 : 80% | T2 : 20% >∗;

Listing 3: Complete specification of the sorted linked list
micro-benchmark.

a linked list, with a number of iterations determined by the
random constant NB. The last operation correspond to the
read of the searched value (or the first larger value in case it
is not found).

Conditional execution is another important mechanism to
specify realistic workloads. Our language supports a gen-
eralized form of if-then-else statement. Conditional expres-
sions may depend on the state of variables and constants.
For instance, in Listing 3, transaction T2 uses a flag _f to
alternatively add or remove an element. If the flag is 0 then
a new element is added (Lines 17–19); otherwise the last in-
serted element is removed (Lines 21–24). This approach is
used by linked list micro-benchmarks to maintain the size of
the list almost constant during the whole experiment. Note
that the reason there is a single write upon node insertion is
that the new node is not shared until commit time; in contrast
there are three writes upon removal because one needs to de-
tect concurrent accesses to the removed node, which can be
achieved by overwriting it. This specification closely mimics
the behavior of a custom linked list micro-benchmark with
the notable exception of the placement of the node data in
memory (deterministic vs. unpredictable placement); yet, as
we shall see in Section 5, this difference does not affect the
results of performance tests.

Threads and transaction patterns. The threads section
specifies the combination of transactions that will execute in
the context of each thread. Unlike transactions, threads may
have infinite length and are defined as patterns using a syn-
tax close to regular expressions. Each thread that executes at
runtime must be defined. By default, the benchmark will ex-
ecute one instance of each thread but command-line param-

eters can be used to indicate which threads to start and their
number of instances (threads are referred to by their name).
Multiple thread names can share the same specification.

A thread definition may include repetitions (fixed, ran-
dom, or unbounded), execution of one out of several transac-
tions chosen at random with predetermined probabilities, se-
quences and grouping of transactions. As an example, List-
ing 3 presents two threads P1 and P2 that both execute trans-
actions T1 with probability 80% and transaction T2 with
probability 20% in an endless loop. Such experiments are
interrupted after a specified timeout or with a signal.

4. Testing TM Semantics
As already mentioned, many issues related to the semantics
of TMs have been identified in the literature. Those range
from “unnecessary abort” [7] to “publication” [15] and are
usually expressed as an interleaving of operations executed
by few threads. They may lead to unexpected results when
executed on a given TM. In this section, we present several
semantic tests3 and apply them on several TM implementa-
tions. The summary of the results is given in Table 1.

We experimented in this paper with five word-based TM
implementations all using invisible reads, i.e., transactions
are not aware that others might be reading a shared memory
location. WSTM [11] is an early TM implementation that
associates version numbers to memory locations and uses
a 2-phase-locking strategy at commit-time. TinySTM [6] is
a C implementation of LSA [19] (single-version variant),
the first time-based STM algorithm. It relies on a global
clock to guarantee that reads are always consistent while
avoiding the quadratic cost of incremental validation. The
versions we used are (i) encounter-time locking (ETL) that
makes writes visible to other transactions immediately and
(ii) commit-time locking (CTL) keeps writes invisible un-
til commit time. For isolation tests, we also used the write-
through (WT) version that updates data in memory immedi-
ately upon write, instead of commit time as other versions.
Finally, to highlight liveness problems, we experimented
with and without contention management. TL2 [3] also uses
a time-based algorithm, but unlike LSA it does not dynami-
cally “extend” validity snapshots at runtime. By default, TL2
uses a commit-time locking strategy. The word-based ver-
sion of RSTM [2] follows a design similar to TL2. Finally,
SwissTM [4] is a C++ implementation of LSA with dynamic
snapshot extensions and an encounter-time locking strategy.
The main difference with TinySTM is that it allows reading
old versions of locked memory locations, as in multi-version
LSA. It also integrates more sophisticated contention man-
agement mechanisms.

3 All the semantic tests covered in this paper can be found in the latest
release of TMUNIT on http://tmware.org/tmunit



# Test name TL2 TinySTM RSTM SwissTM WSTM
ETL CTL WT

Safety tests
1 opacity S S S S S S F
2 linearizability S S S S S S S
3 serializability S S S S S S S
4 SGLA F F F F F F F

Unnecessary abort tests
5 write-during-read-only F S S S F S S
6 invisible-write S F S F S S S
7 false-sharing S S S S F F S

Isolation tests
8 publication issue F F F F F F F
9 dirty-read S S S F S S S

10 zombie-transaction S S S S S S S
11 interference S S S S S S F

Table 1: Results of our semantic test-suite obtained with the five TMs.
Failures are denoted by ‘F’ while successes are denoted by ‘S’.

4.1 Safety tests
The safety tests are interesting to better understand the con-
sistency criterion ensured by TMs. Some TMs ensure opac-
ity [9], some other ensure serializability. As pointed out
in [7], however, some serializable TMs may also be opaque.

Here, we chose four safety tests from the literature. The
opacity test (1) comes from Figure 1 of [9] and was used to
illustrate the difference between strong atomicity and opac-
ity requirements.The linearizability test (2), taken from Fig-
ure 2 of [7], aims at showing that a serializable software TM
may not be linearizable. The serializability test (3) from Fig-
ure 2 of [18] exhibits that a software TM is not serializable.
Finally the SGLA test (4) given in Figure 11 of [15] indi-
cates how single-global-lock-atomicity (SGLA) [15] can be
violated.

TL2, TinySTM, RSTM, and SwissTM pass all the four
critical tests we proposed. Although this does not prove that
they ensure the corresponding criterion, it simply shows that
those TMs do not violate consistency in these specific sce-
narios. Unexpectedly, however, WSTM successfully passes
all the tests but the first one. This test allows us to conclude
that WSTM is not opaque. The detailed TMUNIT trace gave
us some information about the reason of opacity violation:
opacity as opposed to linearizability requires that no trans-
action (even though it aborts) can see the result of the mod-
ification of another concurrent transaction. As shown below
in the interference test, WSTM allows this to happen.4

4.2 Unnecessary abort tests
It is often the case that TMs unnecessarily abort a transaction
even though there is no conflict, e.g., because distinguishing
between a likely conflict and a real one would be too expen-
sive. When the cost of aborts is high, however, it is important
that a transaction commits whenever there is no risk of vio-
lating safety. We refer to an unnecessary abort [7] as an abort
that occurs at some transaction that could have committed
safely. As unnecessary aborts may have a non-negligible im-
pact on TM performance, it is important to identify them.

4 A workaround is to explicitly validate the transaction after every read.

1 Definitions:
2 x=0; y=0;
3 Transactions:
4 T1 := R(x), @L, R(y);
5 T2 := W(y,1);
6 Schedules:
7 S := T1@L, T2, T1;
8 Invariants:
9 [No−abort];

1 Definitions:
2 arr[0..1]=0;
3 Transactions:
4 T1 := W(arr[0],1), @L;
5 T2 := W(arr[1],2);
6 Schedules:
7 S := T1@L, T2, T1;
8 Invariants:
9 [No−abort];

...

[Th2:T2] S

[Th2:T2] W(y)

[Th2:T2] W(y,1)

[Th2:T2] Try C

[Th2:T2] C

[Th1:T1] R(y)

[Th1:T1] A

Invariant NO_ABORT fails.

[Th1:T1] S

[Th1:T1] W(arr[0])

[Th1:T1] W(arr[0],1)

[Th1:T1]:L

[Th2:T2] S

[Th2:T2] W(arr[1])

[Th2:T2] A

Invariant NO_ABORT fails.

Figure 3: (Top) Write-during-readonly test for which TL2 and RSTM
abort while other TMs commit (TMUNIT gives the same trace for TL2
and RSTM, represented on the right-hand side). (Bottom) False-sharing
test for which SwissTM and RSTM abort while the other TMs commit (the
trace of SwissTM is given on the right-hand side).

We test the five TM implementations on three unneces-
sary abort tests. The write-during-readonly test (5) is pre-
sented in Figure 3 (top). RSTM and TL2 fail this test while
TinySTM, SwissTM, and WSTM succeed. The reason for
the success of TinySTM and SwissTM is because they both
use the LSA validation extension mechanism while RSTM
and TL2 do not.

The invisible-write test (6) comes from the Figure 1 of [7]
and checks whether unnecessary aborts may occur when
the write operation is made visible. TinySTM-ETL fails the
invisible-write test because it locks the to-be-written address
eagerly as soon as a write occurs.

Finally, the false-sharing test (7) described in Figure 3
(bottom) accesses consecutive memory locations. Having a
lock protect multiple consecutive addresses can have the
undesirable consequence of producing false sharing, i.e.,
two threads accessing distinct memory locations can conflict
because they share the same lock. As shown by this test,
SwissTM and RSTM abort meaning they use a common lock
on (at least) two consecutive addresses. Unlike other STMs,
they are subject to false sharing.

4.3 Isolation tests
We tested four critical scenarios among which three include
non-transactional accesses. All considered TM implementa-
tions used here ensure weak atomicity: transactions appear as
if they were atomic with respect to each other but not with
respect to non-transactional accesses.5

Specifically, we performed the following isolation tests.
The publication test (8) as described in Figure 1 of [15]
outlines a possible difference between the TM semantics and
the lock semantics of the Java memory model. The dirty-
read test (9) and the zombie transaction (10) test have been

5 We did not use the fences of RSTM that would counteract our schedules.



discussed earlier (see Figure 1 and Listing 2, respectively).
Finally, the interference test (11), described in Figure 4,
outlines a possible interference between two transactions.

As expected [15], all TMs fail the publication-test (8).
The reason is simply that none of the considered TMs
can ensure atomicity when non-transactional code accesses
shared data.

Only TinySTM-WT fails the dirty-read test (9), other
TMs succeed. The reason is that, with the write-through
strategy, updates are directly written to memory upon en-
countering a write operation, and possibly reverted upon
abort. Note that the other TMs might also exhibit this prob-
lem if an unprotected read occurs while a transaction is com-
mitting, but this scenario is not specified by our schedule.

All TMs pass successfully the test of zombie-transaction
(10). First, all the TMs that use the write-back strategy defer
modification to commit time so that transaction T2 reads
value 0 for x. Second, TinySTM-WT aborts immediately T2

when trying to read x; hence the read does not return and the
invariant is not violated.

1 Definitions:
2 x=0; y=0; _v=0; _w=0;
3 Transactions:
4 T1 := R(x,_v), @L, R(y,_w);
5 T2 := W(x,1), W(y,1);
6 Schedules:
7 S := T1@L, T2, T1, [_v==_w];

...

[Th1:T1] R(y)

[Th1:T1] R(y,1)

[Th1:T1] Try C

[Th1:T1] A

[Th1:T1] Terminates

Assertion [_v==_w] fails.

Figure 4: The interference test for which WSTM fails while other TMs
succeed. WSTM trace appears on the right-hand side.

The role of interference test (11) is to check whether a
writing transaction can interfere with a concurrently reading
transaction. For TL2, TinySTM, RSTM, and SwissTM, in-
terference was prohibited, meaning that the write could not
interfere with an ongoing reading transaction, even if this
ongoing transaction eventually aborts. Conversely, WSTM
allows interference and makes a transaction read a concur-
rently written value before aborting. This interference is the
reason why WSTM violates opacity (this violation has been
detected in Subsection 4.1), since opacity requires that lin-
earizability be satisfied and that transactions do not interfere
with aborting transactions. As a result, if the user of WSTM
is not aware of this subtle characteristics, then his/her ap-
plication may behave unexpectedly: T1 observing that x is
different from y may provoke an infinite loop or an irrevoca-
ble external event, like missile firing [8].

4.4 Liveness test
We now demonstrate how TMUNIT can effectively be used
for testing liveness. We present a problem similar to a live-
lock, where some transactions are repeatedly aborted by oth-
ers and cannot progress.

The bank-benchmark test, specified in Listing 4, uses a
classical scenario where one thread computes the sum of
the balances of all accounts of a bank (long read-only trans-
action) while the other threads concurrently perform trans-

fers (short update transactions). In TM designs with invisible
reads and no fair contention management, updates conflict-
ing with long read-only transactions may lead to failed val-
idation. The problem is illustrated in Figure 5 (left), where
short transfer transactions prevent the long balance transac-
tions from committing. Note that this scenario can happen
with any obstruction-free TM and is not an indication of a
“buggy” design. Most TMs incorporate some form of con-
tention management, ranging from simple exponential back-
off (TL2) to sophisticated strategies (TinySTM, SwissTM).

1 Definitions: // variables and constants
2 NB = 8192; // number of accounts (constant)
3 a[1 .. NB] = 0; // memory range for accounts
4 SRC = <1 .. NB>; // random value (constant) in range 1. . .NB
5 DST = <1 .. NB>; // random value (constant) in range 1. . .NB
6

7 Transactions: // specification of transactions
8 T1 := R(a[SRC]), R(a[DST]), W(a[SRC]), W(a[DST]) ; // transfer
9 T2 := {# k = [1 .. NB] : R(a[k]) } ; // compute balance

10

11 Threads: // specification of threads
12 P1 := T2∗;
13 P2, P3, P4, P5, P6, P7, P8 := T1∗;

Listing 4: Specification of the bank benchmark that exhibits lack of
progress (for NB=8192 accounts and 8 threads).

Figure 5 (center) shows the result when disabling con-
tention management in TinySTM while Figure 5 (right)
presents the result with the built-in priority-based contention
manager. Without contention manager throughput drops to
0 when the number of threads performing transfers reaches
3. We inspected the corresponding TMUNIT trace to make
sure that the cause was the problem described in Fig-
ure 5 (left). As expected, when using the contention man-
ager, the throughput is almost independent of the number of
threads performing transfers. Hence the contention manager
ensures progress.

5. Testing TM Performance
In this section, we present the performance results obtained
with TMUNIT on a 4-Quad-Core AMD Opteron Processor
8354 running at 2.2Ghz (16 cores). We tested TinySTM,
TL2, RSTM, and SwissTM. We did not include WSTM in
the performance graphs because of a problem encountered
with porting the inline assembly code to the target architec-
ture. Unfortunately we could not fix this problem in time,
but it did not prevent us from executing the performance-
insensitive semantic tests of Section 4 on another architec-
ture. First, we investigate TM performance in extreme sce-
narios. Then, we compare the performance obtained for an
existing benchmark implementation with the performance
of TMUNIT running the corresponding specification of the
benchmark.

5.1 Extreme scenarios
A powerful feature of TMUNIT is that it allows to quickly
design workload to test specific scenarios or seldom exer-
cised functionalities of the TMs. Here we investigate the re-
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Figure 5: Illustration of the lack of progress of long read-only transactions in the bank benchmark (left). Comparison of the commit rate without (center)
and with (right) contention manager for various numbers of bank accounts (ranging from 1024 to 8192) and threads performing transfers.

sponse of TMs in the face of extreme workloads that high-
light the differences in TM designs. These tests also demon-
strate that TM performance relies tightly on the workload
used.
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1 Definitions:
2 N=1000;
3 arr[1..16∗N]=0;
4 Transactions:
5 T1:={#k=[1..N]; W(arr[k])};
6 T2:={#k=[N+1..N∗2];W(arr[k])};
7 Threads:
8 P1:=T1∗;
9 P2:=T2∗; ...

Figure 6: Performance tests with write-once-read-many transactions (top)
and with disjoint-writes transactions (bottom).

In Figure 6 (top), all threads execute a transaction com-
posed of one write followed by a series of reads. This per-
formance test is made such that the reads executed by one
thread may access the same address as the one already writ-
ten by another thread. This read-after-write pattern is ex-
pected to emphasize the circumstances in which commit-
time locking is better suited than encounter-time locking. As
expected, TinySTM-CTL and TL2 presents better through-
put than TinySTM-ETL. SwissTM takes advantage of the
extra version that can be accessed while a memory location
is locked. An interesting observation is that RSTM through-
put is significantly lower than other STMs, despite using a
commit-time locking strategy. The authors of RSTM have
hinted as a possible reason the non-scalable libstdc++ ex-
ception mechanism used to trigger a roll-back upon abort.

Figure 6 (bottom) shows a scenario that highlights the
cost of writes without contention. Threads perform series of
writes to disjoint memory regions, which implies that there

are no conflicts. One can observe that TinySTM-ETL scales
best. TL2 suffers from using commit-time locking: it needs
to check for every write whether the memory location has al-
ready been written by the same transaction, which requires
a traversal of the write set. To limit the cost of this check,
TL2 uses bloom filters but the overhead is still not negli-
gible. SwissTM performs a double locking of the entries
in the write set and, hence, is penalized when transactions
write many memory locations. RSTM again shows scala-
bility problems due to libstdc++ library. Finally, TinySTM-
CTL suffers from the same problem as TL2 but was executed
without the bloom filter optimization.
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1 Definitions:
2 SIZE=256;
3 arr[1..SIZE];
4 Transactions:
5 T1 := {#k=[0..15] {#j=[1..15];
6 R(arr[k∗16+j])}}; W(arr[0]);
7 T2 := {#k=[0..15] {#j=[1..15];
8 R(arr[k∗16+j])}}; W(arr[16]);
9 Threads:

10 P1 := T1∗;
11 P2 := T2∗; ...

Figure 7: Performance tests with write-many-read-many transactions (top)
and disjoint-reads-write transactions (bottom).

In Figure 7 (top) all threads execute a transaction com-
posed of multiple write operations followed by multiple
reads. In this performance test, operations executed by each
transaction access consecutive addresses and generate much
contention—a scenario where TM is typically less efficient
than locking and contention management has great impor-
tance. Interestingly, SwissTM scales significantly better than
the other TMs. To better understand the reason for this
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Figure 8: Performance comparison of the native intset benchmark (left),
the intset TMUNIT specification using a generated automaton (center) and
using an interpreted automaton (right). The commit rate is shown above
and the abort rate below.

behavior, we have also experimented with TinySTM-ETL
when (1) allowing transactions to read the previous version
of locked memory locations by peeking into the write set
of the lock owner, as in multi-version LSA (TinySTM-1v),
and (2) activating TinySTM’s built-in “priority” contention
manager (TinySTM-CM). Each of these mechanisms pro-
vide noticeable improvement on this extreme workload. The
remaining optimizations consist in choosing the right tuning
parameters, as was studied in [6]. In particular, having each
lock protect a set of consecutive memory locations (typically
the size of a cache line) improves the performance because
it causes fewer cache invalidations and reduces the number
of compare-and-swap operations, as the lock needs to be ac-
quired only once for several consecutive memory addresses.
In [6] (Fig. 9, center), we had observed that an extra lock
shift of 2 was an optimal value for workloads with sequen-
tial accesses and this is indeed the value used by SwissTM.

To observe the influence of having lock protect multi-
ple consecutive addresses (i.e., false-sharing as mentioned in
Section 4.2), we have created a workload in which threads
can only conflict if there is false sharing. In Figure 7 (bot-
tom) each thread reads a series of consecutive addresses
and writes a single, distinct address. To avoid undesirable
memory effects, each write accesses an address on a distinct
cache line next to addresses read by the other threads. This
example may trigger false sharing: upon writing, threads ac-
quire more addresses than necessary, including addresses
that have been read by concurrent transactions, and produce
unnecessary aborts. Indeed, we observe that both SwissTM
and RSTM are subject to false sharing, while other imple-
mentations are not.

5.2 TMUNIT vs. Hand-Written Benchmark
Here, we compare an existing micro-benchmark, a linked list
implementation of an integer set, to its corresponding TMU-
NIT specification (see Listing 3). The benchmark initially in-

serts a given number of elements in the linked list. Then,
each thread starts executing and performs a series of search
and update transactions (alternating inserts and removals to
maintain the size of the list roughly unchanged during the
whole execution) according to a given probability.

A common problem in performance tests is the overhead
introduced by the evaluation framework. As mentioned in
Section 2 and to avoid this overhead, TMUNIT can trans-
late the specification into C code to be compiled before ex-
ecution. Here, we motivate this choice by comparing the re-
sults obtained using the interpreted and generated techniques
against the results of the existing benchmark written in C
code “by hand”, denoted by native.

Figure 8 presents the throughput (top) and the abort rate
(bottom) of the linked list with an update transaction prob-
ability of 20%. A first observation is that the generated ver-
sion presents results (commit and abort rates) similar to the
results of the hand-written benchmark, while the interpreted
version has significantly lower throughout (by a factor 3).
This clearly motivates the need for the generated automaton.
A second observation is that, although the interpreted ver-
sion has a lower absolute throughput, it has similar relative
performance (scalability).

We notice some variation in the throughput for higher
number of threads. ETL performs best, followed by CTL and
SwissTM. SwissTM is slower than TinySTM on this bench-
mark but we have just received an improved version from the
authors that is expected to perform better. RSTM executes
slower than other STMs again due to libstdc++ library scal-
ability that was pointed out in Section 5.1. The reason why
TL2’s performance is lower than TinySTM can be explained
by the differences in timestamp management: TL2 does not
perform dynamic snapshot extension as explained in Sec-
tion 4.2. As expected, the absolute throughput of the inter-
preted automaton is lower than for the generated automaton
(and the native execution).

6. Conclusion
We have presented TMUNIT, a tool for generating work-
loads and testing transactional memories. TMUNIT is ef-
ficient, thanks to its automated code generation tool, and
provides a workload and test specification language that
is simple and powerful. TMUNIT is available online and
comes with a test-suite. We hope that other researchers will
contribute in extending this test-suite that use our simple
domain-specific language.

Using TMUNIT, we have performed extensive experi-
ments on five existing word-based TMs. It outlined TM spe-
cific behavior like the opacity violation of WSTM or the crit-
ical workload under which a TM behaves slowly. Our main
conclusion is that, although the throughput is close to max-
imal under a specific workload, it may fail dramatically un-
der a different workload. Semantic tests outlined the cause



for such performance variations and indicate the need to test
TM depending on the targeted application.

Apart from the fact that TM developers can use TMU-
NIT for verifying the behavior and performance of their TM,
we envisage other uses. For example, the application devel-
oper can verify if her/his assumptions are satisfied by the
underlying TM. This could be used to select the most effi-
cient TM variant that still satisfies the application require-
ments. Furthermore, TM bug reports could be described and
made reproducible at the TM developer site with the help
of TMUNIT. Future work includes the extension of the code
generation to Java for supporting object-based transactional
accesses and generating critical semantic tests that are toler-
ated by the Java memory model.
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