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The architectural shift towards multi-core processors is focusing
renewed attention on parallel programming. Transactional memory
(TM) is a promising paradigm for making parallel programming
easier. Programmers simply define the parallel work, and atomic
execution is handled by the TM system. In this paper, we pose
the next question: Can programmers find parallel work within their
transactions? And, if so, can they exploit this parallelism easily?
This paper answers in the affirmative on both counts.
This paper presents the notion of coordinated sibling transac-

tions, a more powerful and expressive generalization of the tra-
ditional model of parallel closed-nested transactions. Coordinated
siblings transactions are accessed via a new API we define, the
xfork primitive, which is designed to make parallel closed-nested
transaction a general commodity. This API allows programmers
to specify the forms of coordination among the siblings, while
not worrying about how these semantics are implemented by
the runtime. Programmers can thus structure concurrent work in
ways which would be extremely burdensome, if not impossible, to
achieve on existing systems.
This paper also presents the design and implementation of

sibling STM (SSTM), the first STM to implement these fea-
tures. SSTM is built on the .NET Common Language Runtime
(CLR) [17], so we discuss how this runtime’s features (transac-
tion and threading libraries) can be leveraged to produce a parallel
nested STM system. The evaluation of our prototype demonstrates
that programmers, using xfork to express intra-transaction paral-
lelism, can improve transaction performance.

1. Introduction

Intratransaction parallelism requires genuine support for
nested transactions.

-Jim Gray and Andreas Reuter, Transaction Processing

The architectural shift towards multi-core processors is putting
renewed attention on parallel programming. Transactional mem-
ory [14] (TM) has attracted attention for its promise of a parallel
programming model that is easier to use than locks, with perfor-
mance that is just as good. To date, TM has addressed only syn-
chronization of threads, not how a program can use more threads to
increase throughput or decrease latency.
The traditional prescription for intra-transaction parallelism is

a nested subtransaction model, extended to allow the nested trans-
actions to run in parallel. This basic model works only if the par-
allel activity within the transaction is independent. However, the
fact that the work was put into the same transaction to start with
makes complete independence unlikely. Moreover, some kinds of
parallelism, such as speculation, are not exploitable in this model.
While this intra-transaction model is conceptually simple, it has not
been widely used in a database context, or examined in much depth
in the newer TM context.

We suggest that non-independent parallel closed-nested trans-
actions are easy to program and can improve performance. Recent
TM systems have looked at linear (non-parallel) closed-nesting [18,
19], but found its performance lacking [18]. Parallel nesting is as
old as nesting itself, and has also been proposed recently in the TM
context [1]. However, Agrawal’s model treats each nested trans-
action as completely independent of its siblings. We believe this
model insufficiently expresses some of the intuitive sources of par-
allelism, and should be complemented with siblings that can affect
each other’s outcomes.
This paper introduces xfork, a programming construct designed

to make it easier for programmers to express intra-transaction con-
currency. It enables programmers to leverage additional cores to
increase performance, while retaining the ease of use of the TM
API. Xfork is the mechanism by which programmers create co-
ordinated sibling transactions. These transactions are similar to
parallel closed-nested transactions, but with added coordination se-
mantics that make them more accessible and useful to program-
mers.
Coordinated sibling transactions allow programmers to treat

parallel nested transactions as a group and to specify the seman-
tics for the group as a whole. Real life shows that some siblings
are independent, some act as one unit, and some cannot survive to-
gether. We formalize this relationship in our model as the sibling
coordination forms OR, AND, and XOR, using a rough analogy to
the Boolean functions. We show the utility of these forms for TM
programmers and the natural fit with TM code structure.
The xfork API can be viewed as a blend of nested transactions,

fork/join parallelism, distributed transaction coordination and spec-
ulation. If programmers are to focus on their application’s algo-
rithms, and parallelism within them, the runtime should shield them
from the complexities of the low-level implementation of such co-
ordination. The xfork implementation handles the threading and
concurrent execution of the different forks, and performs the nec-
essary coordination. Programs built with the xfork API benefit be-
cause they can use extra cores to speed up individual transactional
units of work.
The contributions of this paper are as follows:

1. We introduce the xfork API and the coordinated sibling transac-
tion model (Section 3), after a motivating example (Section 2)
that demonstrates the multiple ways they can be used.

2. We explore issues related to building a TM system on the
Common Language Runtime, and present the architecture of
SSTM, one such system (Section 4).

3. We present the detailed design of our implementation of the
coordinated sibling model (Section 5) and an STM implemen-
tation that supports parallel closed-nesting (Section 6).

4. We evaluate the ability of our prototype to scale the perfor-
mance of several benchmarks (Section 7).
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The remainder of the paper discusses related work (Section 8)
and then concludes (Section 9).

2. Example

This section illustrates coordinated sibling transactions with an
example taken from one of the benchmarks in our evaluation. As
a nod to the recent global attention paid to financial sectors, our
example is about speeding up financial transactions.

2.1 Background

Our example is the prototypical bank transfer scenario, where a
sum of money is transferred between two bank accounts. The bank
accounts are represented by linked lists that need to be protected
from concurrent accesses.
We’ll assume that the two bank accounts are stored in separate

lists (one for checking accounts and one for savings accounts). If
each list is protected by a lock, and the transfer operation does not
use fixed lock ordering, then concurrent transfer operations can
result in deadlock. Deadlock occurs when each of two transfers
acquires one data structure’s lock and waits for the lock held by
the other operation.
Transactions simplify the programmer’s task because he or she

need not consider the order in which data structures are accessed.
Thus, the potential for programmer-visible deadlock is eliminated,
as is the complexity involved in avoiding deadlocks. In the example
of two data structures and two locks, lock ordering is trivial. How-
ever, when scaled to real programs, lock ordering becomes difficult,
sometimes even impossible, to define and maintain.

2.2 Data structures

Our basic example starts with two data structures. The first,
checking-list, holds checking account records, with one record per
node. The second, savings-list, holds savings account records. To
make the example even more flexible (and more realistic), we add
a third structure that is also accessed by the transfer operation. We
assume that if the amount transferred into a savings account ex-
ceeds a certain threshold, then the bank wants to make a note of
the transaction. For our example, the bank may want to send the
customer involved a special offer to upgrade his savings account
to silver or gold status. Since the accounts involved in this list are
called Notable Savers Accounts, we call this third structure the
nsa-list. All three structures are doubly-linked lists.

2.3 Transactional transfer code

The pseudo-code for the basic transactional transfer operation as it
might be implemented on STMs today is shown in Figure 1. We
make a few observations:

• The account numbers are specified in the src-accno and dst-
accno parameters. For clarity, we assume both accounts always
exist, and omit the code to deal with missing accounts.

• The destination account will be credited if and only if the source
account debit succeeds (i.e. there are sufficient funds).

• We want to add the accounts to the nsa-list even if funds were
insufficient to complete the transfer because, for the bank’s
purposes, attempted transfers are just as important to track as
actual transfers.

We omit the pseudo-code for SearchList, which is a simple
linked list traversal. The AddNotableList code searches the list to
see if the record for the specified account exists and, if so, notes
the latest transfer amount in that record. If the account isn’t already
notable, it adds a new record for the account to the list. The en-
tire transfer operation is performed within a single transaction. The

Transfer (src-list, src-accno, amount

dst-list, dst-accno, nsa-list)

{

atomic

{

DebitCredit(<params>)

NsaCheck(<params>)

}

}

DebitCredit (<params>)

{

src-account = SearchList(src-list, src-accno)

if (src-account.balance >= amount)

{

src-account.balance -= amount

dst-account = SearchList(dst-list, dst-accno)

dst-account.balance += amount

}

}

NsaCheck (dst-list, dst-accno, nsa-list, amount)

{

if (dst-list == savings-list && amount > 10000)

AddNotableList (nsa-list, dst-acct, amount)

}

Figure 1. Traditional transactional code for the transfer operation

code executes safely even in the presence of other concurrent trans-
fer operations. Without transactions, the code would be more com-
plex, due to locking issues and recovering from partial failures. The
code is simple and correct, but for programmers wanting to take
advantage of multi-core processing, the basic TM API provides no
further easy routes for improving the latency of the transaction. The
next subsection shows how sibling transactions can improve this
code’s performance with very little coding effort.

2.4 How to parallelize the transfer operation

Even though our transfer operation is trivial in size, concurrency
can be improved with the appropriate tools. We can identify three
potential areas for concurrency, each of which corresponds to one
of the forms of sibling transactions. We will explain the forms in
detail in Section 3, but intuitively these determine under which
conditions sibling transactions are allowed to commit.

• The actual debit/credit is independent of the nsa-list. Regard-
less of whether the debit/credit succeeds, we will be perform-
ing the nsa-list check. Thus, the nsa-list work can be done con-
currently. This is an example of OR-form sibling transactions.
(The Boolean notation describes the relation between the suc-
cess of the forks, and the success of the xfork operation). Note
that there is no short-circuit evaluation in OR-form, each of the
forks are executed.

• The actual transfer consists of two parts, debit and credit. They
can be performed concurrently, since the credit part does not
depend on data from the debit. The only restriction is that the
credit part must not be allowed to complete if the debit fails (i.e.
insufficient funds). This is an example of AND-form sibling
transactions. There is short-circuit evaluation in this form.

• The SearchList function, which operates directly with the
linked lists, may also be sped up by performing the search
in multiple ways. Because we are dealing with doubly-linked
lists, the search may be performed simultaneously from both
ends of the list (i.e. both forward and backward traversal). This
kind of parallelism is data structure and operation specific. This
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Transfer (<params>)

{

atomic

{

xfork (OR, 2, {DebitCredit, NsaCheck},

{<params>, <params>}

)

}

}

DebitCredit (<params>)

{

xfork (AND, 2, {AcctAccess, AcctAccess},

{(src-list, src-accno, -1*amount),

(dst-list, dst-accno,amount)}

)

}

AcctAccess (list, accno, amount)

{

account = SearchList(list, accno)

account.balance += amount

if (account.balance < 0)

return Failure;

else

return Success

}

SearchList (list, accno)

{

var account

xfork (XOR, 2, {FwdSearch, BackSearch},

{(list, accno, &account),

(list, accno, &account)}

)

return account

}

Figure 2. Parallel transactional code for the transfer operation,
using sibling transactions

parallelism is an example of XOR-form sibling transactions.
(Even if both succeed only one should commit).

2.5 Parallel transactional transfer code

Taking into account the potential concurrency identified in the
previous section, we can re-implement the transfer operation to
take advantage of sibling transactions. The new code is shown in
Figure 2.
The pseudo-code uses xfork with four parameters: the first spec-

ifies the form of coordination between the sibling transactions
(AND, OR XOR), the second specifies how many sibling trans-
actions are to be created, the third specifies the procedures to be
invoked within the nested transactions, and the fourth defines the
parameters to pass to each procedure. The next section describes
the API in more detail.
The changes are straightforward and localized. The transfer op-

eration itself now simply uses an OR-form xfork to execute both
the transfer operation and the NsaCheck concurrently. The Search-
List procedure is rewritten to use an XOR-form xfork to search a
list concurrently using forward and backward traversal (we omit
the FwdSearch and BackSearch traversal code). Finally, the Deb-
itCredit procedure now uses an AND-form xfork operation to per-
form both parts of the operation concurrently. A new procedure,
AcctAccess, is invoked to perform both the debit and credit oper-
ations. It returns a failure code (which aborts the operation) if the
balance goes below zero (i.e. insufficient funds). The AcctAccess
procedure invokes SearchList, which also uses xfork. The AddNo-

Figure 3. Sibling transactions created by transfer example. The
diamonds represent xfork invocations, of the specified types.

tableList function (called by NsaCheck), is unchanged, though it
benefits from the modifications to SearchList.

2.6 Observations about the modified code

Our modified example code highlights several important aspects of
sibling transactions:

• Sibling transactions are composable. A transaction can create
siblings with xfork and these sibling transactions can create
nested siblings themselves. Figure 3 illustrates the sibling trans-
action tree produced by the execution of the transfer operation.
The six leaf nodes represent the maximum number of concur-
rent threads that can be involved in executing the single Transfer
operation.

• Sibling transactions retain the safety property of transactions.
When identifying potential areas for concurrency, we focus
on the parts of the original algorithm that are independent,
and thus can safely execute concurrently. However, since the
transactions execute as nested subtransactions the programmer
does not need to guarantee that they are completely independent
of each other. If they touch common data, the fact that they are
sub-transactions provides the atomicity property that protects
them from concurrent accesses by other siblings (or, for that
matter, from other top-level transactions).

• Of the three forms of xfork in this example, only the XOR form
involves speculation. This form of speculation is novel because
it uses the atomicity and rollback properties of transactions to
allow the programmer to express speculative execution paths
that cannot be automatically inferred.

3. Coordinated Sibling Transactions: Model

This section presents the xfork API and the semantics of coordi-
nated sibling transactions.

3.1 Public API

We add a single function, xfork, to the TM API which provides co-
ordinated sibling transactions. The funcion name stands for transac-
tional fork, and builds on intuitive notions of the fork/join pattern
for expressing parallelism (and to a lesser extent the fork system
call). The method signature from our C# implementation is shown
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bool xfork (xforkForm form,

int numForks,

xforkProcedure forkProc,

object data);

enum xforkForm { AND, OR, XOR };

delegate xforkResult xforkProcedure (int forkNum,

object data);

enum xforkResult { Success, Failure };

Figure 4. The xfork API and accompanying types. The user im-
plements the actual sibling code in a function with the signature of
xforkProcedure.

in Figure 4. Other languages, or overloads, can provide additional
syntactic sugar for the API (e.g. separate forkProcs for each fork),
but the core parameters for xfork are as follows:

• form: the form of sibling coordination (AND, OR, XOR).

• numForks: the number of concurrent sibling transactions to
create.

• forkProc: a procedure to execute inside the sibling transactions.

• data: (optional) user-specified data to be passed to each forkProc.

• return-code: the xfork function returns true on success, false
otherwise.

The system will create numForks nested transactions, with im-
plementations free to schedule them as concurrently as possible.
The system starts the sibling transactions before it calls into the
user-provided forkProc, passing in the optional data. This data
usually contains work-partitioning information, space for output
results, and so on. Fork procedures (forkProcs) are passed the
forkNum parameter, to identify which sibling fork is being exe-
cuted on this thread.
The forkProc returns a code indicating success or failure, which

is used to determine the fate of that transaction (and possibly the
fate of the entire set of siblings). Note that forkProcs do not them-
selves commit or abort the sibling transactions they are executing
in—the commit decision is handled by the system. Sibling trans-
actions may request a restart, as any regular transaction can, and
they may also restart due to conflicts with other transactions. Re-
execution after restarts will cause the forkProc to be invoked again
by the system.

3.2 Sibling forms

The form parameter specifies the coordination semantics between
sibling transactions. We focus on the three core forms used by
our benchmarks (though our system allows custom user-defined
forms). The semantics of each form is a function of the return codes
of the forkProcs:

• AND: All sibling transactions must succeed, or none succeed.

• XOR: Only one sibling transaction must succeed.

• OR: Sibling transactions succeed or fail independently.

The coordination happens in a (conceptual) pre-commit phase
for the sibling group. The xfork operation decides the outcome
for each sibling transaction based on the form semantics. If the
semantics are satisfied, then the siblings commit as allowed by their
form type (e.g. in the AND form all siblings commit, in the XOR

form only one could commit, and in the OR form all successful
siblings commit).
All sibling transactions need not complete execution before a

decision to commit is made. An XOR-form call completes as soon
as a single sibling return success and finishes commit. The system
need not wait for other siblings to complete, and ensures that they
will abort (if it has scheduled them). In an AND-form call, if a
single sibling returns a failure code, the parent fails.
These forms emulate a wide range of coordination behaviors,

ranging from the traditional distributed-transactions semantics of
the AND form, to the traditional independent closed-nested trans-
actions of the OR form, to the speculative nature of the XOR form.
However, the XOR form can also be used in a non-speculative man-
ner, such as when a work item is known to be in one of a set of data
structures (or buckets). In that case, parts of data structures can be
searched in parallel, but as soon as one transaction finds the target,
the XOR semantics terminate the other siblings.

3.3 xfork return code

The xfork API returns true if siblings succeed according to the
specified form’s semantics, and false if they do not. For example,
the XOR form will return false if none of the forks return success,
while the AND form will return false if any fork returns failure.
When xfork returns false, it guarantees to the caller that no siblings
will commit (i.e. system state is the same as before the xfork call).
If the xfork operation completes successfully, it returns true.

The read and write sets of the successful siblings are merged into
the parent transaction following the usual rules of closed-nesting.
For the OR form, an overload of the API can return status flag
which indicates which siblings (forks) completed successfully, and
which failed.
Edge cases exist where the semantics associated with a true or

false return code cannot be provided. The implementation detects
these cases before returning a result to the user, and handles them
by forcing the parent transaction to restart. This case arises due to
the inability to guarantee an atomic commit of a set of siblings,
even after xfork successfully completed the prepare phase of the
entire set of transactions. The final decision rests with the CLR’s
transaction manager (discussed below), and possibly other resource
managers. By relying on higher-level failure-handling (aborting the
parent transaction), we guarantee that the transaction is always
executing in a well-defined program state. This is one of the key
reasons why xfork can only be called from within a transaction.

3.4 Sibling conflicts

Programmers using the AND form should ensure that the sibling
transactions have independent write sets (xfork returns an error and
aborts all siblings if this is violated). They may conflict with non-
sibling transactions, but it is a programmer error if they conflict
with each other. It may be possible to run such conflicting sib-
lings serially, but until we have more experience with AND-form
siblings, it is unclear whether this situation is one that should be
supported. Conflicts among siblings in the OR or XOR form are
allowed, and will cause one of the siblings to restart. If the con-
flict occurs with a sibling that has executed successfully (but hasn’t
committed, since the entire xfork is still active by definition), then
such a conflict will cause the non-completed sibling to behave as
if it has returned a failure error code. The thread stops attempting
to re-execute. In related work, we discuss how techniques, such
as dependence-aware transactions, can be used between siblings to
eliminate certain classes of conflicts.

4. SSTM: Architecture

This section describes the architecture of sibling STM (SSTM).
SSTM is our prototype implementation of an STM that supports
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the xfork API and coordinated sibling transactions. It is built on top
of the .NET Common Language Runtime. This section provides an
overview of how we use and extend the CLR and integrate with
its transactional libraries. This section also provides an overview
of the two primary components of SSTM: the coordinated sibling
executive (SibEx) and the nesting-aware transactional object store

(TxStore). The two components are mostly independent1 and the
detailed design of each will be presented in Section 5 (SibEx) and
Section 6 (TxStore).

4.1 Common Language Runtime

The Common Language Runtime (CLR) is Microsoft’s managed
execution environment that underlies several commercial and re-
search languages. The CLR has several features that make it an at-
tractive environment for our prototype work. These include signifi-
cant transactional and threading infrastructures, located in the Sys-
tem.Transactions and System.Threading class libraries. Our proto-
type can be used by any CLR language (as long as we stay within
the bounds of the CLI specification), including C# and VB.Net.
Our design is somewhat constrained because we do not have

access to the CLR source code and we did not want to make
changes to the C# language. Thus, we built on top of the CLR,
exploiting as many extensibility points as possible while working
within the C# language. The ability to change the language or
the internals of the execution engine would result in even tighter
integration of sibling transactions.

4.2 CLR transaction model terminology

SSTM works within the database-derived model defined by the
System.Transactions library, a model different from that used by
most STM implementations. Therefore, some of the terminology
may be unfamiliar in the TM context. Usually an STM system
provides a programming interface (such as the atomic keyword)
to use transactions, and a runtime implementation that manages the
transactions and memory.
Our database-derived model separates several of the system’s

components. The transaction manager (TM) is responsible for
tracking active transactions, qua transactions, and coordinating
their commit/abort. The TM is not directly involved in the exe-
cution of operations inside any given transaction. One or more
resource managers (RM) manage the actual resources that may be
transactionally modified, as well as export the operations that make
these modifications. The TM and RM must be coordinated. This
coordination is handled through the two-phase commit (2PC) pro-
tocol, where RMs vote on whether a transaction should commit,
and are informed of the outcome of the transaction as determined
by the TM. The first time that a transaction uses an RM, the RM
must enlist in the transaction, meaning that the RM contacts the
TM to participate in the 2PC protocol.
SSTM uses this model, with the actual transactional memory

being represented by the TxStore RM. Moreover, the coordination
between sibling transactions (performed by the SibEx component)
does not require modification of the TM, but can be implemented as
just another RM involved in the transaction. Unlike existing STMs,
which usually provide their own set of TM APIs and do not support
additional resource managers, SSTM must cope with the loss of
absolute control over, for example, the process involved in starting
and completing transactions.

4.3 System.Transactions interfaces

In the CLR, the TM is provided by the System.Transactions library,
while the user must implement the RMs. SSTM’s two main com-
ponents (TxStore and SibEx) are resource managers, and thus must

1 The single minor exception will be noted in Section 5.4.3.

interface IEnlistmentNotification

{

void Commit (Enlistment enlistment);

void InDoubt (Enlistment enlistment);

void Prepare (PreparingEnlistment

preparingEnlistment);

void Rollback(Enlistment enlistment);

}

Figure 5. The System.Transactions.IEnlistmentNotification inter-
face, implemented by both TxStore and SibEx.

interact with the main RM interface, an interface responsible for en-
listments. An enlistment is made using the current transaction ob-
ject’s EnlistVolatile method (Transaction.Current is a thread-local
variable that holds the current transaction object, if any). An en-
listing RM must implement an interface that is used as part of
transaction completion. The IEnlistmentNotification interface (de-
fined in System.Transactions) is shown in Figure 5. The interface
reflects the familiar two-phase protocol commonly used by dis-

tributed transaction managers2.
System.Transactions also includes the interface that is used by

the programmer to create transactions. Transactions are created
through the TransactionScope mechanism. This mechanism is sim-
ilar to the familiar atomic block with a few exceptions, notably that
transactions do not automatically retry when they abort. Transac-
tion commit or abort is ultimately determined by the TM and all
the RMs together, not by any individual RM. This framework has
the benefit of being more general and extensibile as compared to
existing STM designs.
Finally, the System.Transactions framework does not directly

support nested transactions. We therefore define our own conven-
tion for managing closed-nested transactions. We define a prop-
erty, parents using the CLR’s thread-local storage facility. The par-
ents property holds a list of parent Transactions, which are propa-
gated appropriately across threads, and maintained as the nesting
level changes. This property complements the ambient Transac-
tion.Current property (making up for the absence of a Transac-
tion.Parent). Our SSTM components are aware of this extension;
it is public and usable by future nesting-aware RMs as well.

4.4 SibEx

The SibEx component implements the xfork API and coordinates
the execution of sibling transactions. It may be used without TxS-
tore, provided that the programmer has some other (nesting-aware)
resource manager to use. The primary tasks of the SibEx compo-
nent include the following:

• Scheduling the work for each fork to execute on some thread.

• Creating the sibling nested transactions.

• Invoking the fork procedure to execute within the proper con-
text.

• Enforcing the semantics of each sibling form, which may in-
clude re-trying aborted transactions, killing unnecessary trans-
actions, or coordinating the commit of multiple sibling transac-
tions.

2 System.Transactions also provides an ISinglePhaseNotification interface,
which allows enlisters to avoid the prepare phase when they are the only
resource manager in the transaction. However, our prototype does not cur-
rently implement this optimization. Since our two components are neither
integrated with the CLR nor with each other, they would appear as two sep-
arate RMs and thus render the optimization unusable.
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• Stalling the parent transaction/thread that calls xfork until the
sibling transactions complete.

The implementation of each step is described in Section 5.

4.5 TxStore

The TxStore component provides basic software transactional
memory functionality with support for parallel nested transactions.
We built this component because the CLR does not provide built-
in support for transactional memory. TxStore can be used even
without the xfork API provided by the SibEx component. How-
ever, without the xfork API, coordinated sibling transactions are
not available to the programmer. We configure some of our ex-
periments to not use the xfork API as a baseline to measure the
additional benefits of sibling transactions.
TxStore differs from previous STM designs due to requirements

from the runtime environment and SibEx. The key differences are:

• TxStore is a generic store. TxStore operates at the granularity
of objects, not memory bytes. The objects themselves may be
integers, booleans (or any other built-in primitive types), as well
as user-defined classes and structs.

• TxStore is a resource manager (from the System.Transactions
point of view).

• TxStore supports true closed-nested transactions, as well as
concurrent access by nested transactions of the same parent.

The detailed design of TxStore is presented in Section 6.

5. SibEx: Design and Implementation

The Sibling Executive (SibEx) is the component responsible for
executing and coordinating sibling transactions. It contains the
logic that transforms regular concurrent nested transactions into
sibling transactions with the desired semantics. The SibEx assumes
that the system supports concurrent nested transactions. As noted in
the previous section, we were able to add this behavior to the CLR,
and both SibEx and the TxStore are aware of our extensions. In
Section 4.4, we gave a high-level view of the tasks that the SibEx
must perform to execute an xfork request. This section discusses
how each of those tasks is carried out.

5.1 Scheduling work

Design The first task is to schedule execution of different forks
across a set of threads. The parent thread (which calls xfork) can
also execute work items.

Implementation Our prototype uses the CLR’s built in Thread-
Pool, which maintains a set of worker threads managed according
to workload. Xfork packs the relevant state for each fork (forkProc,
forkNum, data, SibExCoordinator, and the parent transaction) into
a context object, and requests execution on a thread using Thread-
Pool’s QueueUserWorkItem method. This is done once for each
fork. We rely on the ThreadPool to determine the optimal num-
ber of threads to use, given hardware resources and the work-
loads of the application and system. The ThreadPool calls back into
SibEx using a provided callback function, which was passed in to
QueueUserWorkItem.

5.2 Creating sibling transactions

Design Once a fork is executed on a separate thread, the system
must create a sibling transaction before invoking the forkProc. The
sibling transaction must be a child of the parent thread’s transac-
tion.

Implementation The SibEx callback (invoked by the Thread-
Pool) creates a transaction using the TransactionScope mechanism.
At a high level, this process is similar to the atomic keyword in
existing STM proposals. The created transaction looks like a regu-
lar top-level transaction to the system. However, we ensure that the
parent transaction, passed through the context object, is made avail-
able to resource managers by adding it in our thread-local parents
list.

5.3 Invoking the fork procedure

Design The forkProc is then invoked within the context of the sib-
ling transaction. The forkProc terminates either with a return code
(success/failure) or an exception. In general, exceptions will be
treated as an abort, and are functionally equivalent to the forkProc
returning false. Depending on the type of sibling transaction, abort-
ing a sibling transaction does not necessarily result in an xfork op-
eration failure.

Implementation In the CLR, function pointers are represented
by objects of type System.Delegate. The SibEx callback syn-
chronously invokes the user-provided delegates, which execute
within the transactional context. We define two new exceptions,
TransactionRetryException and TransactionDoomedException,
which have the obvious semantics when thrown by system com-
ponents or the forkProc.

5.4 Enforcing the semantics of each sibling form

We previously defined the semantics of each of the sibling trans-
action forms (AND, OR, XOR). Since each form requires different
logic, we implement three subclasses of an abstract class, SibEx-
Coordinator, to perform the coordination specific to each of the
forms. The SibExCoordinator class is used by the xfork method
and the various threads executing the sibling transactions. The ap-
propriate type of SibExCoordinator is created for each instance of
xfork invocation, and passed to all the thread-pool threads as part of
the work-item context object. Our design allows custom policies to
be defined (as other implementations of the abstract class), which
is important for enabling future research. We discuss the internals
of the three provided SibExCoordinator implementations and how
they interact with executing sibling transactions.

5.4.1 SibExCoordinator-OR

Design The simplest of the SibExCoordinator implementations
is the one that handles OR-form invocations of xfork. This form
is most similar to regular parallel nested subtransactions, the only
notable difference being that the xfork implicitly performs a join
before returning control to the parent transaction. The sibling
transactions are independent, with each fork completing (com-
mit or abort) without influencing the outcome of other transac-
tions. The SibExCoordinator is informed by the fork threads when-
ever forkProc execution begins, ends, or throws an exception. The
SibExCoordinator-OR attempts to retry any aborts caused by con-
flicts. Finally, when all forks have completed execution, the parent
is signalled that the fork is over. A bitmask of the succeeding forks
can be returned from the xfork for the programmer’s use.

Implementation The SibExCoodinator-OR must retry transac-
tions that abort due to conflicts. Here we encounter an impor-
tant distinction between System.Transactions and traditional STM
transactions: the former do not automatically retry. CLR transac-
tions do not retry because they are designed in the database-style,
not the TM style. The SibExCoordinators decide whether to re-
execute the forkProc in a new transaction based on the result of the
previous transaction execution. The transaction executions results
in a commit (with success or failure return codes), an abort, or an
exception.
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To know whether a transaction aborted or committed, the
SibExCoordinator must subscribe to the outcome-notification using
the Transaction.TransactionCompleted event of each sibling trans-
action created. Once the SibExCoordinator determines whether
a given fork has committed or aborted, it decides if a restart is
appropriate. Since restarted transactions manifest as entirely new
transactions, the SibExCoordinator is given a chance to subscribe
to their outcome notification before forkProc execution begins.

5.4.2 SibExCoordinator-AND

Design The SibExCoordinator-AND has one key difference from
the SibExCoordinator-OR: it must influence, not simply learn, the
outcome of each transaction. The semantics of the AND form
mandate that none of the sibling transactions commit unless they all
commit. They are similar in some respects to a traditional fork/join
barrier.
Note that the xfork API reports failures to the parent thread

only when it can guarantee that none of the transactions have
committed. Execution never returns to the caller in a state where
some forks have committed while others have aborted. Thus, the
parent transaction always knows exactly what the program state is
after the xfork and can continue execution appropriately.

Implementation The SibExCoordinator-AND enlists in every
sibling transaction before the forkProc is called. By enlisting, it par-
ticipates in the two-phase commit process, and thus can influence
the outcome of each transaction. It does not allow any transaction
to commit unless they all reach the prepare phase. If this occurs,
then xfork returns a successful prepare to all of the transactions. If
any fork fails, xfork aborts all sibling transactions.
The possibility remains that one or more of the transactions will

still abort after being prepared by SibEx (due to decisions of other
resource or transaction managers). As mentioned previously, in
situations where the implementation is unable to meet the atomicity
guarantee of the xfork API, it forces a restart of the calling (parent)
transaction.

5.4.3 SibExCoordinator-XOR

Design The SibExCoordinator-XOR is similar to the AND coor-
dinator in that it must influence the outcome of a transaction. It has
two additional requirements. First, only one of the sibling trans-
actions is allowed to commit. Second, if any transaction commits,
then any other sibling forks (and transactions) still executing are
useless and no longer needed, and should be aborted/terminated.
This termination can be accomplished by actually tearing down the
executing threads, or by some other mechanism to preempt the ex-
ecution of the forkProcs on those threads.
We maintain a state machine to coordinate the states of the dif-

ferent sibling transactions. If no transaction has yet committed, the
coordinator only allows one transaction to proceed past the prepare
phase, stalling any others that reach that phase. If the outstanding
prepare request commits, then all other prepare requests are aborted
and all future transactions must abort. However, if the outstanding
prepare does not commit, then another prepare request is allowed
to attempt a commit.

Implementation Terminating unneeded forks and aborting their
associated sibling transactions involves two steps. First, the actual
transactions are aborted by failing all prepare requests that arrive
after a sibling has committed. This is accomplished by virtue of
the SibEx coordinator being enlisted in the transaction (and thus
having a vote). As for terminating the execution of the fork, it
was impracticable to use the Thread.Abort API to actually termi-
nate the threads. Not only is the API discouraged (and very slow),
but the threads we use are owned by the ThreadPool (and thread-
replacement policies introduce additional delays for subsequent

class TxStore

{

object Read(int address);

void Write(int address, object obj);

int Allocate()

void Free(int address)

}

Figure 6. TxStore API

work items). Instead, we terminate the forkProc’s execution, with-
out destroying the actual thread-pool thread.
This is done by having the coordinator call into the resource-

manager (the TxStore), and informing it of the set of transactions it
knows it will abort (i.e. those that are doomed). The TxStore then
throws a TransactionDoomed exception when a doomed transac-
tion attempts to perform an operation on it. This exception is ulti-
mately caught and swallowed by the SibEx callback executing on
the thread-pool thread. This method allows quick cleanup (assum-
ing that the siblings will frequently be invoking the TxStore). An
implementation of sibling transactions that is more integrated in the
CLR runtime environment would not have to make this assumption,
as it would be able to hijack control of any thread at more opportu-
nities.

5.5 Stalling the parent transaction

Design The xfork call must know when it is safe to return control
to the calling thread (parent transaction). As discussed above, the
SibExCoordinator managing an invocation of xfork knows when
it is safe to return, as well as the operation’s result. This event
does not necessarily mean that all sibling transactions have finished
execution on the other threads, only that the necessary committed
ones have completed. Other transactions in the XOR form may still
be executing, but ultimately do not affect the execution of the parent
transaction because the coordinator ensures that they will abort.

Implementation Our parent thread waits on a ManualResetEvent
provided by the SibExCoordinator, which is set when it is safe to
return to the parent transaction.

6. TxStore: Design

The TxStore is a nesting-aware transactional object store used by
our prototype. This section describes its API, high-level design and
key data structures and operations.

6.1 API

The TxStore exposes a public API, which may be used directly by
the programmer, or, when tightly integrated with a language or run-
time, may be indirectly accessed on the programmer’s behalf. The
API, shown in Figure 6, has transactional semantics and is sim-
ilar to a dynamically-addressed dictionary. Objects that are writ-
ten must implement the System.ICloneable interface (if they are
not value-copied primitives), which allows the TxStore to make a
clone for storage and to clone objects in response to read requests.
Cloning objects ensures that active transactions do not directly ma-
nipulate the stored object, but rather a clone in their working set.
Unlike most previous STMs, which operate at the word or class

level, TxStore is a generic (i.e. based on System.Object) store that
can be used for both. TxStore leverages the CLR’s ability to treat
any variable as an object (including primitive types, which also
derive from System.Objects), relying on the transparent boxing and
unboxing of CLR objects. TxStore does not define the granularity
of the objects in the programmer-visible method. The language
designer decides the mapping of programmer-visible classes to
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TxStore-managed objects, and the TxStore implementation handles
both. For example, an object with five member fields can be stored
as one object within the TxStore, or each member of the object
can be stored as a separate object within the TxStore. The finer
granularity can be used to reduce conflicts, such as when different
members are updated concurrently by different transactions. Our
prototype assumes that the entire object is treated as a single unit.

6.2 Design

The TxStore design can be seen as an extension of TL2 [5], adapted
to support parallel nested transactions. As with TL2, the design
accepts serializable executions (equivalent to 2-phase locking) with
conflict detection based on time-stamps. TL2 maintains a single
write timestamp per transaction, and only maintains read versions
for items in the working set. However, TxStore maintains write
versions for each item in the working set. The relation of main
memory to TL2 transactions is similar to that of parent transaction
working sets to parallel nested transactions. TxStore’s use of per-
item write versions allows parallel nested transactions to modify
different subsets of a single parent’s working set.
TxStore uses lazy conflict detection, and the read set is validated

at commit time against a parent transaction’s copy or the committed
item. Isolation is provided by locking the write set at prepare time,
and holding these locks until commit or abort. Deadlocks cannot
arise if the TxStore is being used alone, as conceptually all locks are
acquired in a known order. However, when used with coordinated
sibling transactions, deadlocks can arise in certain cases. We deal
with any deadlocks by using a simple timeout mechanism. All in-
ternal data structures (including working sets) need to be protected
against concurrent access by children transactions. Our implemen-
tation uses locking for simplicity (though we anticipate hardware
assistance could be particularly helpful in this area).

6.3 Data structures

Internally, the TxStore maintains two maps. The first is a map of
committed objects (StoredObjects), indexed by address (see Fig-
ure 7). The second map is of active transactions that are access-
ing the TxStore. Each transaction, whether top-level or nested, is
tracked using an internal RMTransaction object. The nesting rela-
tionships between transactions is tracked by the TxStore, using a
pointer to the parent RMTransaction. Beyond the status field, the
most critical member of RMTransaction objects is the working-set,
a hashtable of AccessedObjects indexed by address. Figure 7 shows
the fields of the AccessedObject class.

6.4 TxStore operations

We present the high-level logic for a transaction performing a read
and write operation (assuming a previously created object is being
accessed). We also show the steps performed on transaction commit
and abort. We omit the allocate/free APIs, as well as the edge cases
where the data structures may concurrently be accessed while being
allocated or freed. These cases are all available in the source code,
which will be made publicly available.
TxStore.Read:

1. Enlist in the transaction if necessary, creating the RMTransac-
tion internal object.

2. Look in the RMTransaction.working-set for the address. If
found, then return a clone of AccessedObject.realObj.

3. If not found, search the chain of parent RMTransactions for the
first working-set that contains the requested address. If found,
propagate it down to all working sets in the chain, including that
of the current transaction, while setting the readFlag for each
AccessedObject created. Each newly created AccessedObject’s
readVersionNum field is copied from the changeVersionNum

class StoredObject

{

object realObj;

int versionNum;

bool deleted;

}

class AccessedObject

{

object realObj;

int readVersionNum;

int changeVersionNum;

bool readFlag;

bool writtenFlag;

bool addedFlag;

bool deletedFlag;

StoredObject lockedObject;

}

Figure 7. TxStore internal data structure. The StoredObject is for
committed objects, while the AccessedObject is maintained by
active transactions in their working sets.

of the AccessedObject found at the top of the chain. To protect
against races from other concurrent children, each RMTransac-
tion object has a lock that is acquired while accessing/modify-
ing its working set.

4. If no parent has accessed the object, look up the address in
the StoredObjects map and copy the realObj into the current
RMTransaction’s working set. The StoredObjects map is syn-
chronized for the duration of this lookup (currently using a
lock though finer synchronization is possible). We set the read-
Flag for the created AccessedObject, and its readVersionNum
is copied from the StoredObject’s versionNum.

TxStore.Write:

1. Enlist in the transaction if necessary, creating RMTransaction
internal object.

2. If the RMTransaction working-set does not contain an Accesse-
dObject for the requested address, create one.

3. Write the object into the existing or created AccessedOb-
ject.realObj field, and set the writeFlag. A newly allocated
version-number is written into the changeVersionNum field.

RMTransaction.Prepare:

1. Lock StoredObject map.

2. For each AccessedObject in the RMTransaction’s working-set:

(a) Lock the StoredObject, and set the AccessedObject’s locke-
dObject field to point to the StoredObject.

(b) If the AccessedObject readFlag is set, ensure that the read-
Version is equal to the nearest parent’s AccessedObject
(changeVersionNum, otherwise readVersionNum), or the
StoredObject’s versionNum. If not, release all locks, and
fail the Prepare request.

3. Unlock the StoredObject map.

RMTransaction.Rollback:

1. For each AccessedObject in the RMTransaction’s working set,
release the lockedObject if it is not-null. This is done without
taking the StoredObject map lock.

RMTransaction.Commit:
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1. Lock the RMTransaction object to prevent any races from con-
current children.

2. For each AccessedObject in the RMTransaction’s working-set:

(a) If the transaction is a top-level one and the AccessedObject
writeFlag is set, copy the realObj and the changeVersion-
Num to the StoredObject’s realObj and versionNum fields.

(b) If the transaction is nested and the parent does not have
an AccessedObject for the same address, transfer the entire
AccessedObject to the parent’s working set.

(c) If the transaction is nested and the parent has a correspond-
ing AccessedObject, merge the current AccessedObject
with the parent’s AccessedObject. If the transaction has
only read (readFlag set), then no merging needs to occur
because the prepare phase ensured that the version number
of the child is identical to the parent regardless of whether
the parent has read or written. If the transaction has writ-
ten (writeFlag set), the changeVersionNum and realObj are
propagated to the parent, whose writeFlag is also set.

(d) Unlock the StoredObject, which is in the AccessedObject’s
lockedObject field.

3. Unlock the RMTransaction object

7. Evaluation

This section describes our evaluation of the SSTM prototype, the
benchmarks used, and the speedup results compared to our base-
line STM configuration.

7.1 Prototype and evaluation goals

Our prototype is not fully optimized. The goals of this evaluation
is to get a sense of the efficacy of the system and the overheads
involved. We thus use a focused set of three benchmarks, which
cover the three forms of coordination.

7.2 Software and hardware setup

SSTM is implemented on top of the Microsoft .NET Framework
version 2.0.50727. The system consists of 2,345 lines of C# code,
including about 600 lines of benchmark code. We make extensive
use of the base class libraries (collection classes, etc.) and synchro-
nization primitives (WaitEvent, Monitor, etc.), and have not both-
ered with many of the usual optimizations (e.g. reader-writer locks,
specialized data structures, avoiding kernel calls caused by wait-
objects, etc.). Our experiments are run on an Intel Core2 Quad CPU
running at 2.66 Ghz, with 4GB of RAM. The OS is Microsoft Win-
dows Vista Ultimate (32-bit), with SP1.

7.3 Benchmarks

We evaluate SSTM with three benchmarks, each corresponding to
one of the forms of sibling transactions. They allow us to evaluate
xfork overhead compared to benefit. Each benchmark is written
with the serial transactional code (the base-line version), and then
modified to use xfork to produce 2 and 4-core SSTM versions.

7.3.1 SearchList

The SearchList benchmark has a transaction that finds a random
element within a doubly linked list. We compare the base version,
which performs a forward traversal of a linked list, with the xfork
version. The xfork version uses the XOR form to search the list.
As soon as one of the siblings has found the node, the others are
destroyed. The 2-core version performs both forward and reverse
traversals, while the 4-core version performs two additional traver-
sals starting from the middle of the linked list (maintained by the
structure).

Figure 8. Speedup of SSTM on the SearchList benchmark, for
different length lists.

Figure 9. Speedup of SSTM on the Transfer benchmark, for dif-
ferent length lists.

We vary the number of nodes in the list from 1,000 to 10,000
nodes. The results are shown in Figure 8. Sibling transactions are
able to provide a significant speedup over the regular linked list
traversal code, with minimal programmer effort.

7.3.2 Transfer

The transfer benchmark exercises the AND form of sibling trans-
actions. It is a debit-credit operation that is a simplified form of the
transfer example presented earlier in this paper (only two lists are
involved, not three). The accounts exist in two separate lists, and ac-
counts are randomly selected. We incorporate a fixed think time to
model the work involved when the appropriate account nodes are
actually found. We compare the base transaction code, where the
debit is done followed by the credit, with an xfork version, where
the debit and credit are done concurrently. The debit fork returns
a failure code if the balance is insufficient. The 2-core benchmark
uses regular linked list traversal in each of the credit and debit forks.

9 2009/2/5



Figure 10. Speedup of SSTM on the demux benchmark. Low AR
models no conflicts, while High AR models 12% conflict rate.
Small Work uses a think-time of 10kC, while Large Work uses a
think-time of 50kC.

The 4-core benchmark adds a speculative search of each list, in ef-
fect nesting an invocation of the SearchList benchmark. The results
are shown in Figure 9. The speedups are less pronounced compared
to SearchList because of the additional overhead of AND coordi-
nation (which involves enlistments) compared to OR. The 4-core
results demonstrate that multiple levels of sibling transactions are
practical, and further improves performance in the presence of the
additional cores.

7.3.3 Demux

The demux benchmark involves a transaction that dequeues a work
item, processes it, and then attempts to enqueue two or more subse-
quent work items to further queues. All operations are done within
a single transaction so that any failures leave the system in a con-
sistent state. Enqueue operations can sometimes fail, for example
when conflicts occur with other top-level transactions, or if the
queue is temporarily full. The benchmark models this by failing
enqueues at a specified probability. We also model the work done
before the transaction enqueues by a variable think time (measured
in kilo-Cycles). We execute 20,000 transactions over the duration
of the run. We modified the benchmark by performing an xfork that
performs the enqueue operations using the OR form, in both 2 and
4 core versions.
The results are shown in Figure 10 as speedups of the SSTM

version to the baseline code. The SSTM versions are able to
speedup the baseline version on 2 cores, and scales noticeably on
4 cores. Note that as the abort rate increases, the relative speedup
of SSTM over the baseline also increases. This increase is a benefit
of nested transactions in general, since less work is wasted when
an enqueue operation fails, since only that action (done within
a sibling transaction) is retried, not the work done by the parent
transaction. The user of xfork automatically gets the benefits of
nested transactions. By the same token, increasing the amount of
work (think time) in the parent transaction leads to better scaling.

7.4 Benchmark results summary

These benchmarks show that for a very small amount of program-
ming effort, we can make sequential transactions run even faster by
leveraging additional cores while retaining the benefits of transac-

tions. We demonstrate a speedup of up to 1.87× (on two cores) and
3.12× (on four cores) on the demux benchmark. On the more sub-
stantial transfer benchmark (with nested xforks), we see a speedup
of 1.2× (on two cores) and 1.95× (on four cores). These results,
obtained on our unoptimized C# implementation, are encourag-
ing, and show that further research and experience with xfork in
software and hardware is warranted, so as to understand better its
strengths and limitations.

8. Related work

This section discusses the most relevant related work.

Nested transactions Nested transactions were introduced long
before transactional memory [20, 4], and were used in early dis-
tributed systems such as Argus [15] and Camelot [7]. Nested trans-
actions are only one type of advanced transaction model. Others are
surveyed by Gray[8] (ch. 4) and Weikum [24]. Application-specific
transaction models tend to be even more complex (and less gen-
eral). These are surveyed by Elmagarmid [6] and include cooperat-
ing transactions, used by some CAD applications, which interact to
pass ownership of resources.

Transactional memory Larus and Rajwar provide a comprehen-
sive reference of software and hardware transactional memory sys-
tems as of summer 2006 [14]. Transactional memory systems ini-
tially did not implement any real nesting, making do with a flat
transaction model. More recently, however, there have been several
proposals that incorporate true nesting into transactional memory,
both in hardware [18, 16] and software [11, 21]. Moss and Hosking
sketch a reference model of both open and closed nesting, as well
as a simpler model, which supports a single thread of execution
only, called linear nesting [19].
Language extensions that are related include orElse [10] and

t for [9] constructs, the latter focusing on the well-known issue
of loop parallelization. Fortress [2] allows (independent) parallel
nested atomic blocks, as does XCilk [1].

Concurrency in the presence of conflicts Recent work on al-
lowing TM systems to accept more schedules [3, 22] allow trans-
actions to commit that would otherwise restart. These approaches
are orthogonal to sibling transactions and can be used alongside
them. Sibling transactions create more concurrent transactions,
so approaches that reduce aborts caused by conflicting transac-
tions should improve the performance of sibling transactions. Ap-
proaches such as dependence-aware transactions would have to be
extended to take into account inter-transaction dependences, and
treat them differently than inter-sibling dependences.

STM programming model extensions Many proposals exist for
changes to the TM programming model to increase performance.
Among these are early release [23], escape actions [25], and Galois
classes [13] and boosting [12]. These proposals often are a good
fit in limited applications, and usually require the programmer to
be very careful to avoid subtle consistency and isolation problems.
By contrast, coordinated sibling transactions are more general,
straightforward to use and retain the full protection of closed-nested
transactions.

9. Conclusion

The xfork API allows programmers to easily express inherent con-
currency within their atomic sections, while retaining the simplic-
ity of transactions. Coordinated sibling transactions make paral-
lel nested transactions a commodity. We presented the design of
SSTM, our prototype system built on the CLR. The evaluation
shows the efficacy and potential of this model.
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