
Transacting Pointer-based Accesses in an Object-based Software Transactional
Memory System

David Detlefs, Lingli Zhang
Microsoft Corporation

{ddetlefs,lingli.zhang}@microsoft.com

Abstract

Software transactional memory (STM) systems for object-
oriented languages that allow relocating garbage collection
(such as languages for the .NET platform, or Java) must
decide how transactional metadata (i.e., fine-grained locks)
is associated with objects. An obvious approach is to lo-
cate this metadata with the object, and move it when the
object is moved. This approach becomes complicated if the
platform allows interior pointers to heap objects, as .NET
does: how do we find the transactional metadata that gov-
erns an access via an interior pointer? We present an ap-
proach that solves this problem via a combination of static
and dynamic information. The most important goal of this
solution is that it be pay-for-play: that programs that do
not use transactions are impacted as little as possible.

1 Introduction

The basic idea of a software transactional memory system
is that each access to memory is controlled by some corre-
sponding transactional metadata (i.e., fine-grained transac-
tional locks). The mapping from data to metadata can be
accomplished in various ways; two popular choices are word-
based and object-based [3]. Word-based systems generally
create a fixed amount of transactional metadata, and map
“words” (which actually have typical sizes closer to those of
cache lines) by address to corresponding transactional meta-
data, typically via a modulus operation, in somewhat the
same manner that hardware caches map virtual addresses
to cache lines. Word-based systems are popular for STMs
designed for “native” language (e.g., C and C++), in which
objects do not move; one example is the WSTM system of
Harris and Fraser [3]. Object-based STMs transact data at
object granularity: a transaction writing to some field of
an object conflicts with a concurrent transaction reading or
writing to different field of the same object. Thus, trans-
actional metadata is associated with each object. Managed
languages gain safety and productivity by using garbage col-
lection to reclaim storage. Generally this assumes the ability
to move objects during collection to reduce fragmentation.
We believe that the use of relocating garbage collection es-
sentially mandates the use of an object-based STM. Associ-
ating transactional metadata with object identity, indepen-
dent of address, allows the mapping from objects to meta-
data to be unaffected by garbage collection. In contrast,
in a word-based system, a relocating collection changes the
object-to-metadata mapping (since it changes the object-

to-address mapping, and the address-to-metadata mapping
stays fixed). So, among other problems, transactions that
did not conflict before a collection might conflict after. Hav-
ing garbage collection potentially abort transactions seems
a bad choice – a very popular GC configuration is a gen-
erational collection in which some form of relocating collec-
tion is used on a frequently-collected youngest generation.
Ruling out this GC design choice for transactions would be
unfortunate.

Native languages permit full-featured manipulation of,
and memory access via, pointers.1 One of the attractions
of word-based STM for native languages is that they have
no difficulty with pointer-based accesses: for every access,
the code computes the accessed address, and then, if nec-
essary, acquires a lock in the corresponding transactional
metadata before performing the access. While some man-
aged languages (e.g., Java) have no pointer-like features,
others (e.g., C#, Modula-3) do. Pointers can be created
that point into the interior of objects, to local variables in
stack frames, or to static variables, and passed as arguments
to functions that perform accesses via these pointers. Ac-
cesses to these different pointer targets may be transacted
differently, which presents a problem for the compilation of
the called method. We call this problem the “by-ref prob-
lem,” since in safe .NET code the major mechanism for in-
troducing pointers is the ref argument passing mechanism.

Contributions. The contributions of this paper are:

• Definition of the by-ref problem, the tension between
object-based STM and the need to support some forms
of pointer-based accesses.

• A static analysis that tracks sufficient information
about the targets of pointers to allow accesses via
those pointers to be transacted, and for callers pass-
ing pointer arguments to callees to also pass this target
information.

• Optimizations that makes this pay-for-play, as defined
in section 2.

The rest of this paper is organized as follows. Section 2
describes the by-ref problem in more detail. Section 3 shows
that how the use of pointers in unsafe code causes similar
issues. Section 4 presents the pointer target analysis we use
to solve this problem, and section 5 shows how the results
of this analysis are used at runtime. Section 6 shows an
important optimization that eliminates most of the dynamic

1This might even be seen as the definition of “native language.”

void Inc(ref int i) { i = i + 1; }

void Bar(ref int j, SomeObj o, int[] a) {
int k = 0;
atomic {

// Assume "SomeObj" has field m_k
Inc(ref o.m_k);
// Static field of "Cls"
Inc(ref Cls.s_k);
Inc(ref a[j]); // Array elem
Inc(ref k); // Local
// Pass the ref arg to callee
Inc(ref j);

}
}

Figure 1: The by-ref problem

cost of this technique. Section 7 analyzes the performance
of this system. Section 8 discusses related work, and section
9 concludes.

2 The by-ref problem

The C# language allows arguments to be passed by refer-
ence. The ref keyword indicates such a formal argument,
and is also used to indicate taking the address of an expres-
sion used as an actual argument for such a formal. Obvi-
ously, a reference argument is a form of pointer; we will see
that this raises issues for object-based transactional mem-
ory. The underlying CLR platform implements reference
arguments using a more general mechanism called managed
pointers. These are pointers that may point into the inte-
rior of heap objects, and are tracked as GC pointers: if a
managed pointer points into a heap object, it causes that
object to survive collection, and any variables containing
that pointer value are updated appropriately if the referent
object is relocated. A managed pointer may only be cre-
ated by taking the address of some location – new managed
pointer values may not be created via pointer arithmetic.
Because mapping interior pointers to object heads can be
expensive, managed pointers may only be stored in stack
variables, so that this mapping process only occurs during
stack scanning.

To see the issues raised by reference arguments, consider
the example shown in figure 1, which assumes that C# has
been augmented with an atomic keyword.

In our CLR STM system, transactional access to dif-
ferent categories of locations are handled in different ways.
Transactional metadata takes the form of a transaction man-
agement word (TMW). Objects contain a TMW as part of
a standard object header.2 Arrays, like objects, have trans-
actional metadata in their object header, but this may ref-
erence a sequence of TMW’s, one per “chunk” of the array.
Static variables, on the other hand, are not part of an ob-
ject. Each static variable has a fixed TMW that is allocated
lazily, on JIT-compilation of the first transactional code

2A pre-existing object header word is used for multiple mutually-
exclusive purposes, including holding a hash code and for per-object
monitor locking. If an object uses more than one of these facilities,
the header is “inflated:” it becomes a pointer to a larger structure
that can hold all the necessary data for all uses. Transactional locking
fits into this framework as another such use for the object header.

that accesses it. The mapping of static variable to TMW
is recorded in a global table. Local variables are accessi-
ble only by the currently executing thread, and therefore
do not require transactional metadata.3 The compilation of
an atomic block saves the initial value of all necessary local
variables and restores them on rollback.

In the example of Figure 1, we see several different kinds
of expressions passed by reference to the Inc method. If
these lvalue expressions had been incremented directly in
the atomic block, all of the cases described above would
be represented: objects, arrays, statics, and locals. If the
increment is accomplished via a call to Inc, the program
should obey the same transactional semantics. How do we
compile Bar and Inc to make this true?

The last call to Inc in the example illustrates that
this “byref problem” is not confined to transactional code.
Whatever solution we adopt will involve transmitting in-
formation from callers to callees about targets of reference
arguments. In this last case, the ref pointer argument to
Inc is an input argument to Bar. The use of a transac-
tion within Bar is an internal implementation detail, which
should not be visible to its callers. So if a caller of Bar is
going to transmit information about the target of Bar’s j
argument, all callers must do so for all reference arguments,
since any such argument might eventually be passed into
some method that performs accesses via that reference argu-
ment within a transaction. When one attempts to add a new
feature to a mainstream product programming platform, es-
pecially a feature whose initial audience will be small, it is
imperative that the implementation of that feature be pay-
for-play: users of the feature may pay some performance
cost, but programs that do not use the feature should not
be impacted. This example shows how a transactional mem-
ory concern might impact the normal-case efficiency of the
language implementation, so we will have to consider this
impact carefully.

One solution to the by-ref problem that would be sim-
ple for the compiler would be to uniformly call a runtime
routine that determines the required information as a func-
tion of the pointer value. For example, this routine could
determine whether the pointer points into a thread stack,
a static variable area, or into the heap. In the heap case,
it could also determine the start of the object into which
the pointer points – after all, the garbage collector needs to
be able to do this for managed pointers. The problem is
that these operations, this last one especially, may be ex-
pensive. There is a big difference between determining the
containing object of a limited number of interior pointers
at GC frequencies, and performing this mapping as a stan-
dard part of mutator operation. Further, not all garbage
collectors will make this facility easily available to mutator
code between collections. The Bartok STM [4] uses these
techniques, and section 7 quantifies their costs. We do not
explore such dynamic mapping techniques further, but fo-
cus rather on compiler-based solutions that we expect to be
faster at runtime.

3At least in safe code. This property may be violated by unsafe
code, but we will consider that a programming error. In the future,
we might extend our programming model to allow the programmer
to declare that a local variable will be accessed by multiple threads,
and treat such a local variable differently than described here.

2

3 Tractable subset of unsafe code

The CLR (like, e.g., Modula-3, but unlike Java) has a full
language that includes unsafe features, but also a safe sub-
set. Code in the safe subset is guaranteed to preserve type
safety, even if it is “incorrect” with respect to the program-
mer’s intentions. Code in the unsafe portion, however, may
violate type safety, with arbitrary outcomes. Thus, the type-
safety of the system as a whole depends on the correctness
of this code. The main way in which type-safety may be vio-
lated is via unmanaged pointers. These are essentially native
pointers, as in C and C++. Arbitrary pointer arithmetic is
supported. One can take the address of fields/elements of
heap objects/arrays, albeit in conjunction with a construct
that “pins” the containing object, so it is not moved by GC
while the pointer is in use.

In our project, we were somewhat surprised by the ex-
tent to which unsafe code is used within the CLR’s Base
Class Libary (BCL). Sometimes this is for questionable rea-
sons (e.g., the use of pointers to avoid array bounds checks,
which might be better handled as a compiler optimization
problem), but in other cases it is necessary. For example,
the CLR’s String class uses a representation that requires
an unsafe pointer-based implementation. A CLR String
is much like an array of Unicode characters, except that
it contains not only a field for size of the array, but also
a field that gives the length of the string, which may be
smaller. A String object contains fields for these lengths,
then a m firstChar field to indicate the first element of the
“inline” character array. Methods that access the character
array take the address of this first character, and then ac-
cess other characters via pointer arithmetic. Representing a
String in safe code would involve an extra level of indirec-
tion, since the String would necessarily point to a character
array. (This is the representation that Java uses.) Avoid-
ing this extra indirection can be a significant optimization,
probably worth the potential safety sacrifice.4

The String case illustrates that it is not sufficient to
transact only code within the safe subset of the CLR, since
this would preclude use of too many fundamental types. We
must therefore be able to transact accesses via pointers as
well as reference arguments. In many cases the use of point-
ers is sufficiently “well-behaved” that this is possible: if we
take the address of a field of an object, we can keep track
of the association of that pointer value with that object. In
other cases, it will not be possible: if a pointer is stored
in a globally accessible location, and read from that loca-
tion later, we won’t have information about the target of a
pointer. We will refer to the portion of unsafe code that we
can transact as the tractable subset of unsafe code.

It is important to emphasize one more point about point-
ers and unsafe code. Even within the tractable subset, we
only promise to transact pointer accesses correctly if they
are correct. Incorrect use of pointers may compromise the
behavior of the system in arbitrary ways, so it should not
be surprising that transactions might not work in a program
with such errors. Correct pointer use, for purposes of trans-
actional memory, requires that if a pointer is created into a
managed object/array (or static or local variable), then any
pointer derived from this via pointer arithmetic that is deref-
erenced must also point into that object/array (or static or
local variable). Similarly, if a pointer points into unman-
aged memory, then so should any derived pointer that is

4Obviously, the implementation of String is quite well tested!

dereferenced. This correctness condition represents no sig-
nificant restriction: the CLR makes no guarantees about
where objects or variables will be allocated, so once pointer
arithmetic creates a pointer outside the original target, there
are no guarantees about what it points to.

4 Pointer target analysis

The previous sections laid out the problem we need to solve.
This section presents the first element of our solution: a
static analysis that tracks information, tailored to the needs
of STM, about the targets of pointer values. As we shall
see, this analysis is a somewhat unusual dataflow analysis,
in that we allow it to effect the code generation, in ways
that make the analysis simpler.

The analysis associates an abstract value we call a static
target info with each expression of a pointer type. Here are
the different kinds of static target infos, and the information
they carry:

• Top. Indicates the absence of information about the
target of a pointer.

• ObjOffset(offset). Describes a managed pointer into
a non-array heap object. The managed pointer points
offset bytes into the interior of the object.

• ArrElem(arrRefVN). Describes a pointer into an el-
ement of an array. When we compile code that ini-
tializes a managed pointer variable to the address of
an array element, i.e., an expression like &aExp[iExp],
we modify the code generation to allocate a local vari-
able arrRefVN, and store the result of evaluating the
array reference aExp into this variable. This local is
immutable, and is uniquely associated with the expres-
sion that creates the managed pointer. We create such
variables eagerly, relying on a later optimization pass to
remove associated code if the variable is in fact unused.

• Static(fieldHandle). Describes a pointer to a static
field; fieldHandle is a pointer to the CLR’s internal data
structure for the field.

• Local. Describes a pointer to a local variable. Details
of this static target info are discussed in section 5.3.

• PtrNull. Describes the null pointer value.

• UnmgdPtr(objVN). Describes an unmanaged pointer
into a heap object. Much as with the ArrElem case,
the code generation for the code that takes the address
and creates the unmanaged pointer value is modified
to allocate local variable objVN, and store a reference
to the object containing the address into this variable.

• InArg(argNum, offset). Describes a managed or un-
managed pointer that was an argument to the method
being analyzed (at argument position argNum), plus
the indicated extra offset, whose use is described be-
low.

• Dyn(varNum). Describes a managed or unmanaged
pointer value whose target information is specified dy-
namically, in a local variable varNum allocated just for
this purpose. This will be explained in more detail be-
low.

3

In addition, several other kinds of pointer targets are
tracked. In all cases, no transacting is necessary for ac-
cesses via these pointers; we distinguish them for ease of
debugging, to better track and explain why no transacting
is necessary:

• CLRPrivate. Describes a pointer value that is private
to the CLR implementation. These are used to imple-
ment the language semantics; their use is not visible
at the user level. Therefore, their modifications need
not obey transactional semantics. For example, some
information about instantiations of generic classes is
available by following a pointer path that starts with
the method table pointer of some object, and the static
target analysis is performed on the CLR JIT’s internal
abstract syntax tree representation of the program af-
ter such code has been inserted.

• RetBuf. Methods returning structs of sufficient size
allocate the return value in the calling method and pass
a reference to this struct to the caller, which initializes
its value. Pointers to such “return buffers” never re-
quire transacting.

• Readonly. Some methods of BCL classes return
pointer values that point into memory created by mem-
ory mapping a file in readonly mode. We annotate such
methods to indicate this property, which allows us to
perform accesses via such pointers without transacting,
since the readonly nature of the referent is enforced by
virtual memory hardware.5

The analysis is, apart from the points described above
where we change the code being analyzed, a standard data
flow analysis. For each basic block of the method being
analyzed, we track the abstract values, as defined above,
stored in the method’s local variables at the start of the
basic block (the block’s prestate). All local variables initially
have a “bottom” value. The prestate of the entry block is
initialized so that any arguments of pointer types are given
appropriate InArg abstract values, and the entry block is
marked as “changed.” The analysis now enters a worklist
loop, in which it repeatedly picks a changed block, clears its
“changed” flag, analyzes it, and merges the poststate values
of local variabls are into successor blocks. If this changes the
prestate of a successor block, it is marked as changed. The
algorithm terminates when there are no changed blocks.

The descriptions of the abstract static target info val-
ues given above explained how these values are determined
when a pointer is first created, which covers many of the
interesting cases. We will not give a complete description of
the rules that determine how blocks are analyzed, but rather
a partial description of the remaining interesting cases. We
will use the notation Abs(exp) to denote the abstract value
that the analysis ascribes to the expression exp.

• Expression of object reference types are interpreted as
managed pointers to the heads of objects:

type(exp) <: Object⇒
Abs(exp) = ObjOffset(0)

• The CLR supports struct types. These differ from
classes in that they may appear “inline” in another

5Note again here that we rely on the (unsafe) use of such pointers
to be correct – that pointer arithmetic does not derive a new pointer
value from such a pointer that points outside the bounds of the region
of readonly memory.

type, without a pointer indirection. Thus, a class C
could have an instance field m s of some struct type S.
A method Foo could have signature Foo(ref S), and
there could be a call to it of the form Foo(ref c.m s).
Within Foo, the code could create a managed pointer
to a field of s, with an expression like &s.m f. This is
the closest we can come to “pointer arithmetic” with
managed pointers. The rule governing this situation
is:

Abs(exp) = InArg(n, offset) ∧ type(exp) = S⇒
Abs(&exp.m f) =

InArg(n, offset + offsetof(m f,S))
Similar rules in other situations where we first obtain
a managed pointer to a struct, and then obtain a
managed pointer to a field of that struct (for example,
if the struct is a field of an object).

• As discussed previously, unmanaged pointer values de-
rived from other unmanaged pointers via pointer arith-
metic are assumed to have the same target as the orig-
inal pointer:

Abs(exp) = UnmgdPtr(objVN) ⇒
Abs(exp + n) = UnmgdPtr(objVN)

• The analysis treats some methods as intrinsics, assum-
ing it knows their semantics. The type System.IntPtr
is treated as a pointer type, and expressions of this type
have an associated static target info value. If an IntPtr
is constructed from a pointer expression, it gets the
static target info of that expression, and if the IntPtr
is converted back to a pointer by a coercion operation,
the target info of the IntPtr flows to the new pointer
expression.

• Method invocations may return pointer types. For per-
formance reasons discussed in section 6, we assign Top
to such return values, unless an annotation indicates
that the target information of the return value should
be tracked. This mechanism is discussed in section 5.2.

Any incompatibility between two static target info values
that are merged at a control flow join point conservatively
results in the Top analysis value. Later we will discuss
situations in which this is limiting, and an extension that
will allow more accurate information to be tracked, at some
runtime cost.

This analysis associates a static target info with each ex-
pression of a pointer type. Thus, at a call site for a method
that has (managed or unmanaged) pointer arguments, the
static target info for the actual argument expressions is suf-
ficient to allow the called method to transact accesses via
these pointers, if necessary. The next section describes how
this information is transmitted from the caller to the callee.

5 Determining pointer target information at run-
time

In this section we describe how pointer target information
is transmitted from caller to callee. We first implemented a
completely general mechanism, which we describe in this
section. Unfortunately, this general mechanism has con-
siderable, and non-pay-for-play, runtime overhead. Section
6 describes an important optimization that eliminates this
runtime overhead in most cases.

In the general mechanism, at a call site invoking
m(a1, ..., an), where some non-zero k of the ai are pointer

4

expressions, we alter the code generation to allocate a tar-
get info sequence variable. As shown in figure 2, this has
a header, then a sequence of k dynamic target info struc-
tures, each derived from the static target info for the cor-
responding pointer argument, in a manner explained below.
Before the call, the generated code initializes the header and
each of the argument infos, and pushes this target info se-
quence onto the head of a thread-local linked list of such
sequences. After the call returns, we pop the pushed target
info sequence from this list. (If the call throws an excep-
tion, the exception-handling mechanism removes all pushed
sequences whose pops are skipped by the thrown exception.)
Obviously, this mechanism is equivalent to passing the tar-
get info sequence as an extra argument.

Figure 2: Target Info Sequence

We now explain how static target info values map to
dynamic target infos:

• In several cases, dynamic target info structures hold in-
formation equivalent to the corresponding static target
info. This is true for the ObjOffset, Static, and Top
static target info. It is illegal to do a transacted access
via a pointer whose dynamic target info is Top.

• The CLRPrivate, RetBuf, and Readonly static tar-
get info types translate into a dynamic None info –
these require no transacting.

• The Local static type translates into a corresponding
dynamic type, the details of which are discussed in sec-
tion 5.3.

• The static ArrElem and UnmgdPtr target infos in-
clude names of local variables containing the object into
which the described pointer points; these both trans-
late into an ObjPtr dynamic target info that carries
the actual object pointer value contained in that vari-
able.

• The InArg static target info (as well as the Dyn info
that we will explain below) indicates that the target
info for the pointer described is available in a specified
location at runtime. For an InArg, the pointer value
is (or is derived from) a pointer input argument to the
current method. The current method therefore has at
least one pointer input argument, and its caller must
therefore have pushed a target info sequence describing
this and any other pointer input arguments. Thus, if
an InArg is passed to some further callee, when we
construct the target info sequence for this call, we copy
the information for the input argument provided by the
current method’s call into the sequence constructed for
its callee.

A method that requires access to the target info sequence
for its pointer arguments, either to transact an access via
that argument, or, as discussed above, to pass an input
pointer argument to a callee, calls a helper method that re-
turns the information for the current method. In the scheme

described so far (before the optimization described in sec-
tion 6), this will always be the head info sequence on the
linked list associated with the current thread.

5.1 Treatment of this

Several properties of the .NET environment conspire to re-
quire us to pass target info sequences to calls that might not
seem to need them, increasing the performance overhead of
this scheme. First, instance methods of struct types takes
their this argument as a managed pointer – since the struct
might, for example, be an interior member of another heap
object. In a transaction, we might well make accesses via
this in a struct method; these must be transacted like any
other access via a pointer, so we must provide target infor-
mation for the this argument in this case. A struct may be
boxed into a heap object consisting of a method table pointer
followed by the struct. If we invoke one of the struct meth-
ods on such a boxed struct, the invocation goes through an
unboxing stub that adjusts the this value to point to the
start of the struct, skipping over the method table pointer.
Thus, the target information this pointer when invoking a
struct method on a boxed struct should be an ObjOffset
indicating an offset equal to the size of the method table
pointer (denoted as sizeof(void*) below).

A struct may also implement one or more interface types,
and struct methods may implement methods of these inter-
faces. Casting a struct to an interface boxes the struct. A
method with an instance of an interface in hand does not
know whether the object is a boxed struct whose methods
will go through an unboxing stub, and which require tar-
get info for their this argument, or a normal object that
doesn’t. It must therefore be conservative and pass the tar-
get info information, indicating that the this argument, if
it is a struct this, is an ObjOffset(sizeof(void*)). If
the call has other pointer arguments, the target info se-
quence is just made larger, but, unfortunately, this target
info must be passed even if there are no other pointer ar-
guments. This situation is illustrated in figure 3, where the
this argument in the call to f.M1 in M2 is described as Ob-
jOffset(sizeof(void*)), because the argument might be a
boxed struct, and the method a struct method, as is in fact
the case in the first call to M2 in M3. Because of this case,
we must also pass information about the this argument in
the second call to M2, where it will not be used.

In .NET delegates are a kind of managed function
pointer, and are similar to interfaces with respect to the
issues above. Delegates are a limited form of closure: a
delegate can be created for an invocation o.M, and the del-
egate instance will retain a reference to the object o. If o
is a boxed struct, an invocation of the delegate will require
target info for its this argument. As with interfaces, code
invoking a delegate instance cannot know whether this is
true, so we create target info in such cases, even when there
are no other pointer arguments.

Delegates may also be instantiated with static methods,
but again, the caller has no idea whether this is the case.
Consider a static method with at least one pointer argument.
These arguments will appear as pointer arguments in the
signature of the delegate type, so the caller will know to pass
target info information for them, but will do so in a target
info sequence that includes the possibly-required info for the
this argument. We want the static method to expect the
same target info sequence format whether it’s called directly
or via a delegate. Thus, all target info sequences, even ones

5

interface IFoo {
void M1();

}

class Foo: IFoo { ... }

struct S {
int m_i;
void M1() { ...; m_i++; ... }

}

void M2(IFoo f) {
...;
f.M1(); // this <= ObjOffset(sizeof(void*))
...

}

static IFoo g_f;

void M3() {
S s1;
g_f = (IFoo)s1; // Boxing operation.
M2(g_f);
M2(new Foo());

}

Figure 3: Struct methods and interfaces

for static methods that take no this arguments, have a slot
for a this argument.

5.2 Tracked pointers, ’dyn’ static target Info, and
return values

In the discussion of the tractable subset of unsafe code, we
stated that if an unmanaged pointer is stored into a glob-
ally accessible location, then we cannot assume information
about the target of the pointer. In some cases this prevents
use of existing code in transactions. To allow such code to
be used transactionally with minimal modification, we pro-
vide a TrackedPtr struct. This type pairs a pointer with
the dynamic target info that describes it – a specific kind of
“fat pointer.”

This type has a void* Ptr property, whose get and set
methods are treated specially by the JIT compiler in the
following way:

• Calls to set method of the Ptr property, which takes
a value pointer argument, are translated into calls to
an internal setValueWithTargetInfo method, which
takes the value argument plus an additional dynamic
target info argument. The compiler generates code that
materializes the dynamic target info corresponding to
the static target info that describes the value argu-
ment, and passes that as the second argument.

• Calls to the get method of the Ptr property, which re-
turns a pointer value, are translated into calls to an
internal getValueWithTargetInfo method, which re-
turns the same pointer value, but which also has an
additional out reference parameter whose type is a dy-
namic target info struct. A local variable of that type
is allocated at the call site, and the address of that vari-
able is passed. The getValueWithTargetInfo method
initializes this out parameter with the stored target
info.

int * pi = null;
if (P) {
pi = &o.m_i; // ObjOffset

} else {
pi = &Cls.static; // Static

}
atomic { (*pi)++; }

Figure 4: Merge failure

The static target info of the pointer value returned
by a getValueWithTargetInfo invocation is a new type
Dyn(infoVN). This indicates that the dynamic target info
describing the pointer value is contained in the given local
variable – the variable allocated to serve as the out parame-
ter in the call. If a pointer value described by a Dyn static
target info is passed as an argument to a call, the dynamic
target info in the specified local variable is copied into the
target info sequence – obviously, a call with a Dyn actual
argument cannot be completely static.6

In our experience so far, tracked pointers are most useful
in cases where a pointer is stored in a heap location once,
and used often, and the pointer has transactable informa-
tion. For example, in one case, we obtain a pointer into
a readonly memory-mapped file, whose contents are inter-
preted as a (large) struct containing internal arrays. Since
this memory is readonly, it does not require transacting. The
tracked pointer mechanism allows us to determine this in a
principled way, giving some pointers the “readonly” prop-
erty and using a tracked pointer to store that information
with the pointer.

The transformation of single-word set and get operations
into operations on multiple words makes atomic operations
into non-atomic composite operations. For full correctness,
we should synchronize these accesses with some lock, but
have not yet done this.

Another situation that would otherwise not provide suf-
ficient data to allow transacting is also solved by the Dyn
mechanism: pointer return values. We ordinarily treat
pointer return results as static Top target info values. We
allow programmers to add a custom attribute to a pointer-
returning method indicating that its return value’s target
info should be tracked. When this annotation is present,
the dynamic target info sequence technique is used, and an
extra element is added to the sequence for the return value.
The called method fills in this element at all return points,
based on its static target info for the pointer return value.
During the static analysis, a dynamic target info variable
v is allocated to hold the info describing the return value,
and the return value is given static target info Dyn(v). The
code generated for the call site, copies, after the call, the
return value’s dynamic target info from its element in the
target info sequence into variable v.

Finally, we note that the Dyn mechanism provides a
general mechanism for avoiding “merge failure.” Consider
the code in figure 4. In the system described so far, this code
will be illegal: we will not know how to transact (*pi)++,
since we won’t know whether pi is a pointer into an object
or a pointer to a static variable – in the static analysis, the
control flow merge will assign pi the static target info Top
after the if statement. We can avoid this, again, using Dyn.

6Unless, as discussed previously, we extend the mechanism to allow
a dynamic target info to specify an offset in the caller’s stack frame.

6

int * pi = null;
DynTargetInfo dtiForPi;
if (P) {
pi = &o.m_i; // ObjOffset
dtiForPi = DynTargetInfo(ObjOffset,

offsetof(typeof(o), m_i));
} else {
pi = &Cls.static; // Static
dtiForPi = DynTargetInfo(static,

descriptor(Cls.static));
}
// static target info of pi is Dyn(dtiForPi)
atomic { (*pi)++; }

Figure 5: Dyn fixes merge failure

When a merge would assign Top to a pointer variable that
is later used in a way that requires transactable target info,
we could transform the code to have accurate information.
To illustrate, the code of figure 4 would be transformed to
the code of figure 5 We have not yet implemented this trans-
formation.

5.3 Local variables

We have postponed detailed discussion of local variables un-
til now. For the most part, local variables are transacted
differently than heap objects or static fields. They are ac-
cessible only to the current thread,7 so they do not require
transactional locking. They should, however, provide failure
atomicity. For local variables updated directly in the body
of an atomic block, we save their value before the atomic
block, and restore them to their saved values on rollback.
(This save/restore mechanism could be restricted to vari-
ables live on entry to the atomic block, but we have not yet
implemented that optimization.)

Pointers to local variables complicate this story. Our
static analysis notes the creation of pointers to locals, and
tracks, where possible, the target of such pointers. When a
write occurs via such a locally-defined pointer, we add the
target local to the set of locals that are saved on transaction
entry and restored on rollback, just as if the target local
had been written to directly. However, this only partially
addresses the issue, because pointer arguments may be de-
fined in caller contexts and passed to callees.

Consider the method Bar in figure 6. The static analysis
tracks the relationship between k and kp and saves/restores
k. (In a program where kp might alias multiple locals, the
static analysis tracks the set of possible target locals, and
all members of the set are saved/restored.)

The situation for ip is more complicated. In Blah, the
variable i is initially 7. The first call to Bar increments i.
If it now throws an exception that aborts the transaction,
Blah should observe i restored to its initial value.

We obtain this behavior by describing the argument in
Blah’s call to Bar with a Local dynamic target info. When
we enter a transaction that contains a possible write via a
pointer argument (where passing the pointer as an argu-
ment to a called method is considered a possible write), we
generate code that dynamically queries the target info for
the argument, and if it is a pointer to local, saves the value

7At least in safe code – we currently consider code that passes
pointers to local variables to other threads a violation of our pro-
gramming model. We might support local variables used in this way
via some declaration in the future.

void Bar(int * ip) {
int k = 100;
int* kp = &k;
atomic {

(*kp)++; (*ip)++;
// Throw aborts tranaction.
if (P) throw new Exception();

}
}

struct S { double m_d; int m_i; float m_f; }

void Blah() {
int i = 7;
S s;
try {

Bar(&i);
Bar(&s.m_i);

} catch (Exception x) {
int k = i; // Should be 7, not 8.

}
}

Figure 6: Pointer-to-local issues

of the local, and registers an “undo action” to restore this
value on rollback. Since multiple pointer arguments could
point to the same local variable, only the first undo action
for a given local is registered. One further complication is
that the pointer could be into the interior of a local variable
of a struct type, as is the case in the second call to Bar. The
dynamic Local target info carries the offset of the pointer
into the variable, and the total size of the variable. Thus,
at runtime we can determine the address of the start of the
local variable, and save/restore the entire local on atomic
block entry and rollback, respectively.

6 Completely static pointer target information

Allocating, initializing, pushing, and popping target info se-
quences can impose considerable overhead. We measured
a 6X slowdown in one microbenchmark. Again, the caller
does not know whether the callee will create a transaction,
so, when using the general push/pop technique, we would
incur this overhead always, even in programs that do not
use transactions. This violates the pay-for-play principle,
and would be an unacceptable in a product system where
TM might only be used by a few early adopters.

Fortunately, it is usually not necessary to use the general
push/pop mechanism. When we compile a call with pointer
arguments, before we generated code to push a dynamic
target info sequence, we determine whether that target info
is actually completely static: whether the information that
would be put in the dynamic target info sequence is compile-
time constant, or requires some dynamic lookup. The static
target info types Top, Static, Local, and (importantly)
ObjOffset translate into completely-static dynamic target
infos.8 The static target info types UnmgdPtr, ArrElem,
and InArg do reference information only available at run-
time in their translation into dynamic target info types, and
thus are not completely static (though we will alter this soon
for InArg).

8This property is the major motivation for representing managed
pointers via ObjOffset, rather than treating managed and unman-
aged pointers uniformly.

7

If a call’s target information is completely static, then
we do not generated code to allocate, initialize, push, and
pop a dynamic target info sequence for that call – the code
for the call is the same code generated by the system with-
out transactional memory. Instead, we allocate the target
info sequence at compile time, and store it in a global ta-
ble maintained by the runtime, keyed by the address of the
instruction after the call (which the callee will see as its re-
turn address). To save space, we also maintain a second
table that canonicalizes these target info sequences – since
simple ones may describe large numbers of call sites. We
now modify the helper method that looks up the target info
sequence for a method that requires it. It obtains the return
address of its jit-compiled caller, and uses this to attempt to
look up its target info sequence in the global table. If this
succeeds, it returns a pointer to that sequence; if it fails, we
assume that this must indicate that the information at the
call site was not completely static, so that the caller used
the dynamic linked-list scheme, and return the head of the
per-thread linked list of dynamic target info sequences.

In evaluating this mechanism, we found that a signficant
fraction of call sites failed to be completely static only be-
cause of InArg arguments. We therefore modified our sys-
tem to allow InArg target infos to be treated as completely
static, creating a dynamic target info of this type. A call
with pointer arguments that would have been completely
static but for InArg values may now be included in the
optimization. We only use the dynamic InArg target info
type when we create a completely static target info sequence
to insert into the global table; when we generate code to al-
locate and initialize a target info sequence, we copy the info
for the input argument, as described previously (since the
InArg information does not tell us how to transact via the
pointer, only where to look for that information). Support-
ing dynamic InArg infos requires a further modification of
the lookup algorithm. When the lookup helper finds a static
target info sequence for the current return address in the ta-
ble, it checks before returning (via a flag in the header of the
sequence) whether it has any InArg elements. If it does, it
must resolve those InArg descriptors to actionable target
infos. It copies the sequence to an allocated copy, and initi-
ates a stack walk, in which it retrieves the information for the
caller, finds the elements indicated by the current method’s
target sequence’s InArg specifications, and replaces those
with the indicated elements of the caller’s target info se-
quence. These may, recursively, also be InArg infos; the
stack walk continues up the call chain until all InArg infos
have been resolved.

We can imagine techniques for treating the remaining
static target info types as completely static. A UnmgdPtr
static target info names a local variable containing the ob-
ject into which the unmanaged pointer points. Similarly,
an ArrElem static target info names a local variable con-
taining the array object. In creating dynamic target infos
corresponding to these static target info types, we could con-
vert this variable name into the stack-pointer-relative offset
of the variable in the caller’s stack frame. The lookup mech-
anism could find this stack slot. These options require closer
integration with the JIT compiler than we have needed so
far, and we have not yet found them necessary. Section
7 gives details of the effectiveness of the completely static
optimization without this addition.

7 Performance analysis

In this section we evaluate the performance of our system.
Our main focus is on the pay-for-play impact of this mecha-
nism on normal operation, but we also measure the perfor-
mance of the mechanism when used within transactions.

7.1 Effectiveness of the “completely static” opti-
mization

Table 1 details the effectiveness of the “completely static”
optimization. We JIT-compiled all the methods in several
managed assemblies, listed in the first column. The second
column gives the number of call sites encountered in those
methods, and the third and fourth columns the number of
those call sites that required pointer target info, and the
percentage this represents of all call sites, respectively. The
fifth column gives the number of call sites whose pointer tar-
get info was completely static, and the sixth expresses this
as a percentage of the fourth column. Finally, the seventh
column gives the number of sites with length=1, and the
eighth the percentage this forms of call sites with pointer
target info; this gives a rough indication of the number of
call sites that have information only about a this argument,
for the reasons discussed in section 5.1. There are only a
few distinct lengt=1 target info sequences, so canonicalizing
these, and other simple cases, likely saves significant space.

Table 1 shows that a fairly consistent fraction, between
12% and 23%, of call sites require pointer target information.
A very large majority of these, at least 87%, are completely
static, and thus incur no dynamic cost. A fairly large frac-
tion of the call sites, usually about 50%, have pointer target
sequences of length 1, so most cases are quite simple.

Another pay-for-play concern is the cost of the pointer
target analysis during dynamic compilation. Table 2 shows,
for this selection of assemblies, the cost of compilation of
all the methods in the assembly, and the fraction of this
consumed by pointer target analysis, when pointer target
analysis is enabled. This is 11% or less of total compilation
time in all cases.

assembly comp. Anal.
time time
(sec) (sec) pct

mscorlib 6.76 0.62 9.2
System 5.81 0.55 9.5
Sytem.Deployment 1.29 0.08 6.2
Sytem.Design 6.96 0.67 9.6
System.Drawing.Design 0.44 0.04 9.1
System.Windows.Forms 8.37 0.94 11.2
System.Xml 5.07 0.56 11.0

Table 2: Pointer target analysis cost

Figure 7 shows the results of several hundred perfor-
mance regression tests, mostly microbenchmarks, used by
the CLR. For each test, we measured the difference between
the base non-STM system and the STM-enabled system,
for whatever “figure of merit” the test uses (usually time,
but sometimes working set or other measures.) To be clear,
none of these tests use transactions; these measurements
are intended to measure the impact of the ability to support
transactions on non-transactional code. While it is visually
obvious that there is a small general negative trend, and

8

assembly # call # with pointer arg pct # completely pct of calls info pct of calls
sites target info of calls static with info length 1 with info

mscorlib 77109 12722 16.5 11877 93.4 7456 58.6
System 60507 8843 14.6 8535 96.5 4802 54.3
Sytem.Deployment 11425 1995 17.5 1854 92.9 1030 51.6
Sytem.Design 87582 14945 17.1 14774 98.9 4803 32.1
System.Drawing.Design 4827 1111 23.0 970 87.3 534 48.1
System.Windows.Forms 111890 22899 20.5 22690 99.1 11250 49.1
System.Xml 56740 7039 12.4 6679 94.9 5085 72.2

Table 1: Effectiveness of “completely static” optimization

Figure 7: Performance Test Perf Delta Histogram

we have thus not yet completely achieved our goal, we are
close: the majority of the tests are within 5% of the original
performance. While we have not shown the corresponding
comparison without the “completely static” optimization,
we can assure you that it was significantly worse.

Finally, we present a measurement of the cost of using
pointer target information in transactions. We implemented
a dictionary (or mapping) interface, from key to value, via
a binary tree, with two different versions of the lookup op-
eration. One returns a boolean indicating the success or
failure of the lookup, and, when true, returns the value for
the given key as an out reference parameter. The other
requires the value type to be an object type, and forbids
mappings to null so that null can indicate a lookup fail-
ure. We compared the performance of these dictionary im-
plementations by building trees of 215 nodes, then doing a
107 lookup operations of randomly-distributed keys within
transactions. In the current system, the dictionary whose
lookup operation does not use a reference parameter takes
5.2 secs, while the dictionary whose lookup operation does
take a reference parameter takes 8.2 secs when the reference
parameter is bound to a local variable in the caller – this is
about 58% slower. A major optimization necessary to get
this level of performance was the implementation of an in-
trinsic function to fetch a method’s return address. Before
this we used a heavyweight general stack-walking mechanism
for this, which caused greater than 3X slowdowns. Further
optimizations are no doubt possible.

Our colleague Tim Harris was kind enough to help com-
pare our system with the Bartok STM [4] system on the
benchmark described above. Since Bartok uses the GC-

related technique discussed in section 1, this allows us to
compare with that technique. The Bartok system maintains
a table with an entry per (4Kb) page, indicating the start
of the first object that extends onto that page. This table is
updated as part of allocation. To find the object containing
an interior pointer, they map the pointer to the contain-
ing page, use the table to find the first object on the page,
then traverses (contiguously allocated) objects forward until
it reaches the object containing the interior pointer. (This
mechanism is also commonly used to initiate scanning of ob-
jects on dirty cards in generational garbage collectors that
use a “card table” to track old-to-young pointers.)

To measure the cost of this technique, we introduced a
third version of the dictionary benchmark described above,
in which the reference parameter is bound to a field of a
heap object. In our system, this increases the benchmark
time to 12.7 secs; we believe the cost of determining by-ref
information is roughly the same as when the argument is a
local variable, but writing to a field heap object turns the
read-only transaction into a writing transaction, with cor-
responding extra expenses. The Bartok system is a differ-
ent compiler, and the measurements were run on a different
machine than described above, so comparisons can only be
approximate. That being said, Bartok STM quickly recog-
nizes that a reference argument bound to a local variable is
in a thread stack, and requires no transacting; the cost for
the non-reference parameter version is nearly the same as
the cost when the reference parameter is passed a local vari-
able, between 8 and 9 secs. When the reference parameter
is bound to a heap object, however, the cost varies greatly,
depending on whether the object is near the start or end of
a page. When the object is near the start of the page, the
cost increases only to about 10.5 secs, but when the object
is near the end, the time can exceed 70 secs. Our system
seeks to avoid this variation in performance, which would
probably be mysterious to users.

8 Related Work

There have been a number of library-based STM implemen-
tations for managed languages with relocating garbage col-
lectors, including DSTM [7], OSTM [3], and ASTM [9]. In
these approaches, memory accesses are transactional if they
obey a prescribed protocol. Pointer-based accesses would ig-
nore that protocol, and are therefore not transacted. SXM
[5], and DSTM2 [6] are examples of systems in which STM li-
brary calls are inserted implicitly via a transformation phase
directed by some annotations. These, too, have a required
access protocol, which pointer-based accesses would ignore.

The only other STM system we know of that has sup-

9

ported object-based locking with relocating garbage collec-
tion in a language that allows pointer-based access is the
Bartok STM [4]. As discussed above in section 7, Bartok
uses GC-related techniques for resolving interior heap point-
ers, which has performance variability probably unsuitable
for operations potentially done frequently in mutator code,
such as transactional writes.

The techniques we use are somewhat remiscent of those
used by, e.g., CCured [10], Cyclone [8], and SafeC [1]. When
static analysis cannot prove the safety of pointer-based ac-
cesses, these systems use “fat pointer” representations that
carry not only the pointer value but also its legal range;
dynamic checks ensure that every pointer access is within
this range. Our system associates similar information with
pointers – in fact, the information we provide could be used
to dyamically check the safety of the pointer accesses to heap
objects in unsafe code – but uses this information for a quite
different purpose, to transact pointer-based accesses within
transactions.

Techniques that have also been used in the compila-
tion of garbage collected languages are also relevant. When
compiler optimizations create interior pointers from object
pointers, it is useful keep track of the relationship between
the two variables, so that the derived pointer can be updated
if the base pointer is [2]. This is similar to the present work,
where we introduce new variables to hold base pointers when
interior pointers are created, and track the relationship be-
tween these variables in our static analysis.

9 Conclusions

We have pointed out an interesting tension in the implemen-
tation of software transactional memory: object-oriented
languages with relocating garbage collection argue for as-
sociating transactional metadata with objects rather than
with addresses, but it is simpler to transact pointer-based
accesses in an address-based STM system. The .NET plat-
form has both garbage collection and pointer-based acccess,
so we had to resolve this tension when building an STM sys-
tem for .NET. Our approach was to add extra pointer target
info data to support the relatively rare pointer-based ac-
cesses, and to attempt to make this support as pay-for-play
as possible. This entailed static analysis to compute the cor-
rect target info for each pointer, and runtime mechanisms
for passing this information from callers to callees. We pre-
sented a performance evaluation indicating that the “com-
pletely static” optimization was effective at removing most
STM-related overhead in non-transactional code. Thus, we
can support pointer-based transactional accesses with rea-
sonable cost in an object-oriented system with relocating
garbage collection.

10 Acknowledgements

Our thanks to Tim Harris for speedy cooperation in the Bar-
tok STM measurements described in section 7, and to the
anonymous reviewers for pushing to make those measure-
ments.

References

[1] Austin, T. M., Breach, S. E., and Sohi, G. S. Ef-
ficient detection of all pointer and array access errors.
SIGPLAN Not. 29, 6 (1994), 290–301.

[2] Diwan, A., Moss, E., and Hudson, R. Compiler
support for garbage collection in a statically typed lan-
guage. In PLDI ’92: Proceedings of the ACM SIG-
PLAN 1992 conference on Programming language de-
sign and implementation (New York, NY, USA, 1992),
ACM, pp. 273–282.

[3] Fraser, K., and Harris, T. Concurrent program-
ming without locks. ACM Trans. Comput. Syst. 25, 2
(2007), 5.

[4] Harris, T., Plesko, M., Shinnar, A., and Tarditi,
D. Optimizing memory transactions. In PLDI ’06:
Proceedings of the 2006 ACM SIGPLAN conference
on Programming language design and implementation
(New York, NY, USA, 2006), ACM, pp. 14–25.

[5] Herlihy, M. Sxm1.1: Software transactional memory
package for c#. http://www.cs.brown.edu/ mph.

[6] Herlihy, M., Luchangco, V., and Moir, M. A
flexible framework for implementing software trans-
actional memory. In OOPSLA ’06: Proceedings of
the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applica-
tions (New York, NY, USA, 2006), ACM, pp. 253–262.

[7] Herlihy, M., Luchangco, V., Moir, M., and
William N. Scherer, I. Software transactional mem-
ory for dynamic-sized data structures. In PODC ’03:
Proceedings of the twenty-second annual symposium on
Principles of distributed computing (New York, NY,
USA, 2003), ACM, pp. 92–101.

[8] Jim, T., Morrisett, J. G., Grossman, D., Hicks,
M. W., Cheney, J., and Wang, Y. Cyclone: A safe
dialect of c. In ATEC ’02: Proceedings of the Gen-
eral Track of the annual conference on USENIX An-
nual Technical Conference (Berkeley, CA, USA, 2002),
USENIX Association, pp. 275–288.

[9] Marathe, V. J., Iii, W. N. S., and Scott, M. L.
Adaptive software transactional memory. In In Proc. of
the 19th Intl. Symp. on Distributed Computing (2005),
pp. 354–368.

[10] Necula, G. C., McPeak, S., and Weimer, W.
CCured: type-safe retrofitting of legacy code. In POPL
’02: Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages
(New York, NY, USA, 2002), ACM, pp. 128–139.

10

