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Abstract

The conflict-serializability consistency model can redwadsort
rates and improve performance in software transactionah-me
ory (TM) systems. We discuss how this model can be supporied
hardware-based TM systems. We consider a hybrid implerienta
where serializability is implemented as a software layetropof a
base hardware TM system. We also extend the base hardware T
system to fully support serializability in hardware withmimal
compiler support. We implement and evaluate the hybridesyst
and an ideal version of the full hardware system. Our evalnat
using two typical benchmarks shows that support for seaali-

ity in hardware-based TM systems results in reduced cosiflict
However, the overhead of software in the hybrid impleméwrat
eliminates any benefits; performance is 2-5 times slowepezoad

to the base hardware system. In contrast, the ideal hardwarem
improves performance by up #8.2%, because of the reduction
in the aborts. We conclude that with efficient implementaiin
hardware, conflict-serializability can improve perforroanespe-
cially for applications with high cost of aborts.

0]

1. Introduction

The emergence of multi-cores into mainstream computing has
given Transactional Memory (TM) systems considerable [@opu
ity. This is mainly because TM promises to facilitate paafiro-
gramming, resulting in performance that is comparable &b ¢
fine-grain locking with the programming simplicity of coargrain
locking. In essence, TM systems providéomicity, consistency
andisolation for the shared-data accesses within critical sections,
called transactions[1]. Over the last few years, several software
of hardware implementations of TM systems have been prapose
differing mainly in how they ensure that these criteria at.nn
general, the design space of TM systems (whether implemiémte
software or in hardware) spans the space generated by samu
proaches to: (1) when conflicts between transactions aecteet,

(2) where the updates made by transactions are kept, (3hwhic
transactions, in the case of conflicts, are aborted, andd#)the
consistency of reads is ensured. The exhaustive investigattthis
design space resulted in both an understanding of tradeanfbng
approaches and in performance that is close to that of fiaie-gr
locking for applications with short transactions and lovge of
data sharing.

In contrast, TM systems fail to provide acceptable perfarcea
levels for applications with long-running transactions érigh-
degrees of data sharing [2]. This is mostly due to the fact tha
software (and indeed hardware) TM systeimitate a two-phase

locking (2PL) model to ensure the consistency of shared-dah-

der 2PL, transactions are aborted or delayed, if they parfon-
flicting accesses. Although 2PL is simple to implement anelsdo
provide fast transactional operations, it may be overtrietive
and may degrade performance by causing unnecessary abjorts [
Consequently, we have been investigating consistency Inade

wet another dimension of the TM design space. More spedifical

we have explored the use of conflict-serializabili€yS) instead of
2PL [2]. We demonstrated that tig& model can outperform 2PL
in a software TM system for applications with long-runningnts-
actions and high data sharing, mainly because of the reguati
abort rates. Although the use 6fS introduces overheads due to
extra bookkeeping and consistency checks, the benefitseahw
the overheads for such applications.

The popularity and benefits of TM is leading many research
groups to consider hardware systems that provide TM suppoirt
thermore, one commercial system Sun Microsystem’s RockiArc
tecture has emerged recently [3]. This motivates us to densiys-
tems and algorithms that take advantage of the TM featuias th
are available now, or may commercially become availablehén t
near future. In this paper, we investigate how to leveragé base
hardware support for conflict detection and atomic comnoitsft
ficiently implementCS. We first describe the support that must ex-
ist to realizeCS in any hardware-based TM system. We then con-
sider two approaches to implementing this support. Firetcen-
sider a hybrid approach in whighS is implemented in a software
layer that utilizes the base support without modifying &c8nd,
we extend the base hardware support for conflict detectidven
sion management to fully impleme@& in hardware with minimal
compiler support.

We evaluate the two approaches using a simulator of the LL
(lazy version management, lazy conflict detection) harevimased
TM system proposed in [4]. We fully implement the hybrid ap-
proach on top of the simulator, which allows us to understaed
benefit-performance tradeoffs that exist with this appioside also
extend the simulator with an ideal version of hardware timgtié-
mentsCS but incurs no hardware overhead du€t®. This allows
us to determine an upper bound on the performance gainsahat c
be achieved by fully supportingS in hardware.

Our evaluation shows that the use@# reduces abort rates in
both the hybrid and hardware implementations. Howeverhe t
hybrid implementation, the overheads of thg software outweigh
the benefits of reduced abort rates, reducing performaneefég-
tor of 2-5 times compared to the base system. In contrasiciézé
hardware implementation improves application perfornsarior

1The actual implementation may not necessarily be lockdasel in fact
may use optimistic concurrency.



a linked-list application, which has long-running trartsats and
high abort rates, the improvement over the base hardwatensys
is significant, about 28. However, for a red-black tree applica-
tion, which has short-running transactions and low abdets;ahe
benefit is (as expected) minimal at about%.4rhese results lead
us to conclude that it is unlikely for a hybrid implementatio be
viable in practice but encourage us to pursue a detailedizaed
implementation that supporgsS.

The remainder of the paper is organized as follows. Section 2
reviews transactional memory, consistency models impheeaby
transactional memory systems, the design space of hardrvease
actional memory systems and our earlier software-basetiadet
for implementingCS. Section 3 discuses ho&sS can be imple-
mented using our method on an LL hardware-based TM system.
More specifically, it discusses the type of support that iessary
and how this support can be realized in a software layer otrip
LL system or fully in hardware. Section 4 presents our evaua
of these two implementations using simulation and reprtesiea
benchmarks.

2. Background

In this section, we give a brief overview of transactionalnme
ory and the consistency models implemented by transactean-m
ory systems. Further, we describe our previous work on using
serializability order numbers (SONs) to implement the domfl
serializability consistency model in software TM systems.

2.1 Transactional Memory

A transaction is a sequence of instructions that access adlifym
shared data and that satisfies atomicity, consistency ataticn
criteria. Respectively, these criteria imply that (1) tHeeets of
transactions appear to be performed instantaneouslygeithier, or
none of them are performed, (2) the state of shared data &yalw
consistent, and (3) data modified by a transaction cannaidaetsy
other transactions until the transaction successfullyptetas.

A transaction can perform a number of read and write actions
between its start and commit. Teeheduleor thehistoryof a set of
transactions is the list the actions performed by transastin the
order they happen in real time. éonflictis said to exist between
two actions if the actions belong to different transactjahese
actions access the same address, and at least one of thess act
is a write. A serial schedules a schedule in which the actions
of one transaction do not interleave with the actions of lagot
Two schedules are said to benflict-equivalenif: (1) they contain
exactly the same actions, and (2) the order of the conflicatippns
is the same. Two schedules are said toviesv-equivalentf: (1)
they contain exactly the same actions, and (2) the resultheof
execution is the same (i.e. the same values are read and ghe fin
state of the system is the same).

Transaction memory (TM) systems guarantee that transeaitio
actions executed by concurrent threads appear to be pedorm
in some serial order without any interference. That is, tiects
of these actions will be the same as if the transactions ¢xecu
sequentially in some serial order. If the accesses of aacdios
cannot be ordered properly, the transaction must be aborted

2.2 Consistency Models

A consistency model determines how the actions of conctrren
transactions can be ordered to match an equivalent seglerti
ecution. Given a particular schedule, a more relaxed a stamly
model can find a larger set of equivalent serial scheduleat iEh
transactions have a better chance of successfully committi

We discuss three main consistency models that can be im-
plemented by transactional memory syster@gphase locking

—

wall clock

Figure 1. A schedule valid under 2PL.

linearizability and conflict-serializability We demonstrate that
2-phase locking is more strict than linearizability and ftioty
serializability, allowing fewer schedules to be valid.

2.2.1 2-Phase Locking (2PL)

2PL does not allow conflicting accesses while a transacsioorn-
ning. If such an access occurs, either one of the conflictimgst
actions is aborted, or the conflicting access is delayed.ig2RE
lustrated in Figure 1, which shows the schedule of two transa
tions TX1 and TX2 that make read and write accesses to address
A, B, C, and D. The read actions are represented by empty cir-
cles, whereas write actions are represented by solid sirbiethe
schedule shown, TX1 and TX2 perform conflicting accesses on
addresses B and C. Thus, either one of the transactions raust b
aborted (obstruction-free software TM systems), or TX2 st
until TX1 completes (blocking software TM systems) as iatécl
by the dashed arrow in Figure 1. Conversely, TX2 can perféosm i
access to address A without aborting or stalling becauseatiess
does not conflict with TX1.

Note that in this paper, we use the te@RL to refer to a
consistency model rather than an actual implementatioat iEha
TM system canmitatea locking-based implementation (i.e. admit
the same schedules) even if it is not lock-based. For instanc
the software or hardware TM systems that implement optimist
concurrency models (such as TCC [5] and TL2 [6]) allow active
transactions to commit even if they show thieientionsto write to
the same locations during execution. However, these sgstefact
implement the 2PL consistency model by delaying the actussy
until commit time, just like in the example shown in Figure 1.

2.2.2 Linearizability
A schedule S is said to be linearizable if:

1. Itis view-equivalent to some legal serial schedulg-Sand

2. The transaction partial order induced by S is a subsetef th
operation partial order induced by.$.

The first rule states that if a schedule is linearizable, austh
be possible to obtain a serial legal schedulg. 8y just reordering
the actions of transactions in such a way that the final ouécom
execution would remain the same. The second rules impoags th
the order of transactions must remain the same,in.Shat is, if
a transaction TX1 completes before another transaction kxi2s
executing, all the actions of TX1 must come before all théoast
of TX2 in Ss. In fact, we can say that under linearizability, the
execution is equivalent to some execution such that eaebaction
happens instantaneously at some point, cdilegarization point
between the start and commit. Finding a linearization pfmingll
the transactions is callediaearization

The schedule in Figure 2 is invalid under 2PL because TX2
makes conflicting accesses on addresses B and C before TX1 com
pletes its execution. The schedule, on the other hand gariirable
because TX1t- TX2 — TX3 (i.e. all the actions of TX1 precedes
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Figure 2. Alinearizable schedule invalid under 2PL.

Figure 3. A serializable but non-linearizable schedule.

all the actions of TX2 and all the actions of TX2 precedestadl t
actions of TX3) is a valid linearization. This linearizatiproduces
the same outcome as the concurrent execution (the same \aakie
read and written) and respects the partial order of traimsecf{T X3
comes after TX1 and TX2).

2.2.3 Conflict-Serializability

A schedule is said to be conflict-serializable (or simplyadzable)
if it is conflict-equivalent to some legal serial schedulbus, seri-
alizability, unlike linearizability, does not require arfial order of
transactions to be preserved. The schedule in Figure 3idizer
able because TX3» TX1 — TX2 is a valid ordering of transac-
tions with respect to the order of the conflicting accessesvéver,
this schedule is not linearizable because linearizahitifyoses the
additional ordering of TX2-TX3 based on the order of the start
and commit times of transactions. This requirement coidtaithe
previous ordering of transactions which is based on theraftbe
conflicting accesses.

Note that conflict-serializability is based on finding coetfli
equivalent serial schedules, and hence it is different faiher
models such as sequential consistency, linearizabiligw \se-
rializability and strict serializability which are basedh wiew-
equivalence of schedules. Thus, just like 2PL and linehbilibg
conflict-serializability also presents an intiutive modielthe pro-
grammer, where transactions observe the final committectsaif
shared data. Yet, conflict-serializability is more relatibdn 2PL
and linearizability because it does not impose any orderamst
actions and, therefore it allows more concurrency.

2.3 SON-Method for Serializability

In our previous work [2], we proposed a method for efficientty
plementing conflict-serializability in a software trangacal mem-
ory system. We showed that the use of serializability is fieiad

to performance, particularly for applications that havar@é de-
gree of data sharing, and thus are difficult to execute effiilyisvith
2PL.

Our method attempts to incrementally construct a conflict-

equivalent sequential schedule based on the actions sbitdons.

If such a schedule can be constructed then the transactiersea
rializable. The conflict-equivalent serial schedule isstacted by
determining aserializability order numbe(SON) for each trans-
action. The SON is an integer that indicates the relativeroofl a
transaction among all transactions in the conflict-eqeivaterial
schedule that is being constructed. During execution, 1B&lS
of transactions are determined based on the relative ofdben
conflicting actions. That is, the transaction that perfoitfiaccess
first will have a smaller SON because, in any conflict-eqeinal
schedule, the relative order of the conflicting actions ningsthe
same, as described above. If a unigue SON can be determined
for each transaction, then a conflict-equivalent seriakdale ex-
ists. Further, we can conclude that all read/write/comuetioas of
transactions atomically happen in the order of their tratisa’s
SONSs.

The SONSs of transactions are determined using the following
two basic rules:

1. If a transaction TX1 accesses (reads or writes) an adthass
has already been committed by another transaction TX2, then
TX1’s SON must be be higher than that of TX2. This is because
the access of TX1 happen later than the access of TX2.

2. If atransaction TX1 reads an address that is later coradhity
another transaction TX2, then TX1's SON must be lower than
that of that of TX2. This is because TX1's read action happens
earlier than the commit action of TX2.

The first rule imposes a lower bound on the SON of a trans-
action. Similarly, the second rule imposes an upper bounthen
SON of a transaction. Thus, we associate with each traosaati
pair of integer values that reflect the lower and upper bowrds
its SON. The lower bound of a transaction is initialized tafd
the first rule is repeatedly used to increase it. The uppendbdsi
initialized to co and the second rule is used to lower it. If at any
moment during execution, the lower bound on the SON for atran
action becomes equal to or higher than its upper bound, rémis-t
action cannot be placed in a conflict-equivalent serial dglee In
this case, the transaction aborts.

If a transaction performs all its accesses without aborting
starts its commit phase during which it examines its SON eang
and determines a specific SON. If the upper bound of the range i
not oo, then it reflects the SON of some conflicting transaction.
Therefore, the SON of the transaction is selected as theruppe
bound minus orfe If the upper bound iso, then the SON of the
transaction is set to the lower bound ptuswvheren is the number
of threads.

2.4 Hardware TM Systems

Previous studies on TM have shown that minimal hardware sup-
port can provide fast transactions [1, 7] in spite of limdas

of available resources. Cache coherence protocols prelédmnt
and efficient ways for detecting conflicts, with minimal exgsns
over standard protocols. In addition, hardware buffersaticast-
ing, hardware tokens, transactional status bits for canke are all
simple hardware techniques that can be used to providdimolaf
stores and fast atomic commits for transactions. Below weudis
different design choices that can be implemented in a hawlMsl
system.

1. Eager/Lazy Conflict Detection (CD) With eager conflict de-
tection, conflicts are immediately detected as the accésges
pen. With lazy conflict detection, on the other hand, corslict

2The selection of integer numbers as SONs imposes the auflitamn-
straint that lower bound cannot be upper bound minus one.



are detected when transactions commit and broadcast heir u specifically, the second rule of our SON-based method stz &
dates to other transactions. atransaction writes to an address already accessed (reaitten)

; : ; by another transaction, the upper bound of the accessmatrtion
2. Eager/Lazy Version Management (VM) With eager version oy . - .
magnagemgnt active transgctions pSerfo)rm their ugpdatelad:lep must be updated with the SON of the writer transaction. Since
(in cache or memory): each keeps a log of old-values. With laz SONs are determined at commit time, our technique requinas t

version management, old values are kept in place and updatesconﬂ'CtS are detected when the writer transaction comrhlitsv-

are buffered in a private per-processor transactionaebufitil ever, when the write access actually happens, the writesaion

o ; : i t yet assigned an SON (let alone know if it will succekgfu
commit time. Lazy version management provides fast aborts, 'S M0t}
because the old values are kept in place, whereas the eagef°MMil). Thus, the hardware support for our SON-based tech-

version management provides fast commits because the newdue must use lazy conflict detection that detects the ctsifli

values are kept in place when transactions commit their writes. This allows the S@hhe

3. Conflict Management (CM). When a conflict happens, con-
flict management algorithm dictates what type of action rbast

committing transaction to be communicated with other cofifig
transactions.

taken. Three types of actions can be taken depending on which3.2 Serializing Transactions

transaction wins the confliccommitter wins requester wins
andrequester stallsWith requester stalls, updates that conflict
with previous accesses are stalled until the accessoriraos
commits. A conflict causes an abort only if a stall potentiall
cause a deadlock.

Depending on the design choices they implement, we can clas-

sify hardware TM systems into three main types [4]:

1. Lazy CD/Lazy VM/ Committer Wins . These systems are re-
ferred to asLL systemsTCC [5] and Bulk [8] are the main
hardware systems of this type. To perform atomic writes, LL
systems acquire commit tokens [9], and to ensure forward
progress, they follow the committer wins policy.

2. Eager CD/Lazy VM/Requester Wins These systems are re-
ferred to aEL systemd.TM [10] is an example TM system of
this type.

3. Eager CD/Eager VM/Requester Stalls These systems are
referred to a€£E systemd.ogTM implementations [11, 7] are
the main representatives for this type of hardware support.

The well-known hardware TM systems proposed in the litera-
ture are based on the 2PL consistency protocol. That is,na-tra
action can commit if and only if it does not conflict with aneth
transaction from start to commit. Any conflict causes onehef t
conflicting transactions to abort or to be delayed.

3. Hardware-Based Implementation of
Serializability

In this section, we discuss how serializable transactiansbe im-
plemented using our SON-based technique by taking advamtag
a base hardware support for transactional memory. We stdrt w
the description of this base support. Then, we present tde ad
tional support required to implement our SON-based tealenfqr
serializability on top of this basic hardware support. Sigeadly,
we discuss the additional transaction metadata that neete t
stored, and the operations that need to be performed fortesatdt
actional load, transactional store, conflict and transaatiommit.
We discuss both a software/hardware hybrid implementadimh
in generic terms a full hardware implementation. The hylime
plementation assumes only the minimal TM hardware supgort o
the base system; serializability is implemented as a soéayer
on top of the hardware. The full hardware implementatioroinc
porates serializability support in hardware by extending lbase
hardware TM support and assumes minimal compiler support.

3.1 Base Hardware TM Support

The base hardware system we consider is an LL system with lazy

conflict detection/lazy version management [4]. This chois
mandated by the fact that SONs are selected at commit timee Mo

We believe that serializability can be implemented as thesise
tency model using our SON-based technique, on top of our base
system. Below, we discuss what type of additional suppdttige

in software or in hardware) is necessary for this purpose.

e Transaction Metadata. In addition to the traditional read and
write sets kept for detecting conflicts, an SON lower bourdl an
an SON upper bound must be stored for each transaction.

e Transactional Load. When a load instruction is issued, the
transaction must (1) update its lower bound with the write-
number associated with the address, (2) verify that theséan
tion itself is still valid by comparing its lower and uppenbuals.
These operations are in addition to the operations perfdimge
a typical TM system, such as adding the loaded address to the
read-set.

Transactional Store When a store instruction is issued, our
SON-based technique does not require any additional opera-
tion. Since the store value is buffered and the address can be
written to by other transactions several times until thagra
action commits, it is more efficient to perform the seridita

ity check (updating lower bound and comparing it with upper
bound) at commit time.

e SON-Tables We need to store: (1) For each address written to
by any transaction, the SON of the transaction that wrotheo t
address, which we refer to as theite-number (2) For each
address read by any transaction, the SON of the last traosact
that read the address and committed successfully, which we
refer to as theead-number

Conflicts. In traditional transactional memory implementa-
tions, conflicts cause transactions to abort. In our SONedas
technique, a conflict triggers a serializability check. c®irwe

are assuming a LL system, a conflict happens between a trans-
action that is trying to commit a value to an address, andaira
action that already accessed the same address. The committe
transaction cannot abort, and thus the reader transadtonrids
update its upper bound with the SON of the committer transac-
tion and verify that it is still valid. For this purpose, thertdlict
triggers a validation, during which the reader transactigrit-
erates over its read set to find which address was updateal sinc
the last validation, (2) updates itsvn upper bound with the
write-number associated with this address.

e Transaction Commit. When a transaction commits, it must
validate its writes. For this purpose, it (1) iterates ovemirite
set and updates its lower bound with the write-number associ
ated with each address it wrote to, (2) iterates over its sead
and updates its lower bound with the read-number associated
with each address it read, (3) verifies that it is still vakd-
ter the validation, the transaction selects an SON and ctsnmi
by (1) updating write-numbers for each address in its write-



Transaction* tx;

START_HW_TX();

tx = START_SW_TX();

for(Node* n = head->next(); n != NULL; n = n->nhext()) {
if(tx->openForRead(n) == false) ABORT_HW_TX();
if(n->key() == key) break;

}

If(tx->COMMIT_SW_TX() == false) ABORT_HW_TX();

COMMIT_HW_TX();

Figure 4. Lookup method under the hybrid programming model.

set, (2) updating read-numbers for each address in itsgead-
Then, the transaction is ready to perform the traditionatiha
ware commit operation storing the values in memory and in-
forming other transactions of conflicts.

3.3 Hybrid Implementation

In this section, we discuss how the above-mentioned additio
support for our SON-based technique can be implementeddds a s
ware layer on top an LL system with only 2PL-based hardware
support. For this purpose, we need to (1) implement libradisc
for transactional load, store and commit actions, (2) stenesac-
tional metadata in software, (3) maintain write-numberd srad-
numbers in software and (4) implement software traps foflicbn
handling. We discuss how these are done below.

Library calls are used to perform serializability checksfdoe
transactional load, store and during commit actions. Bezan-
serting calls before each load and store instruction idigiefit and
impractical, we choose to use object-level conflict detecin the
software layer, even though conflicts are still detecteti@icache
line level by the hardware. That is, before accessing a fiekho
object, software routines are calleddpenthe object in either read
or write mode at which point serializability checks are paried.
Thus, shared objects of target applications inherit fromaasac-

tional objectclass which implements these open methods and other

transactional data members that will be mentioned latgurei 4

shows how the library calls are used for the lookup method of a

linked list class.

The transactional metadata consists of an SON lower bound, a
SON upper bound, a read-set and a write-set for each tramsact
and stored in d&ransactionclass instance. The read-numbers and
write-numbers are stored as data members of transactibjeats.
These numbers are read to perform serializability check&lén
open and commit library calls, and they are updated duringnaid
with the SON of the committing transaction. Since transect
objects are shared by all transactions, accesses to thiesmdm-
bers are subject to race conditions. To avoid these racetim ]
readings of the read-numbers and the write-numbers arerpeatl
as non-transactional operations. However, updates afi@ped as
transactional operations. This ensures that updatesafmaabers
and write-numbers are atomic and are discarded if the tciinga
aborts.

Software traps are used to switch to software routines te per
form serializability validation when conflicts occur. Caafs are
triggered during the execution of an active transactiotheftrans-
action has already accessed an address which is currently be
committed by another transaction. At this point, the actigesac-
tion traps to a software trap handler which calls a validatiethod
for this transaction. Before the trap is serviced, the paogcontext
(program counter, registers, etc.) are saved to allow #reséction
to continue execution after the trap. The validation metitetes
over the read-set of the active transaction and tries to fincbb-

jects that were committed since they were opened in read impde
the transaction. These are the objects whose write-nunfizees
changed since they were opened. If such an object is fouadah
tive transaction updates its upper bound with the writednemnof
the object and verifies that the upper bound is still highantthe
lower bound. If the transaction is still valid, it continuesecution
by re-loading its saved context. If the transaction is iiokat exe-
cutes an abort instruction which causes the hardware thosado
abort and restart.

Note that, in order to avoid inconsistent state, the vallat
method must update its upper bound with the write-numbenef t
object associated with the conflicting address that triggj¢ne val-
idation. That is, the write-number of this object must bebles
to the active transaction when it performs the validatioac&ise
write-numbers are updated with transactional actionsghpdates
are buffered inside hardware transactional buffers andrbecvis-
ible to other transactions only when transactions comnhitsT we
must make sure that a committer transaction commits theswrit
numbers of transactional objects first before it commitsijitdates
which may cause conflicts. We can simply ensure this by making
transactions to commit their updates in a LIFO (last in fitg) or-
der. This is because software commits are invoked just béfard-
ware commits and hence write-numbers are always the las¢gnt
in transactional buffers.

Further, while a conflict is being handled, other conflicta ca
still be triggered by committing transactions. These cot¥liare
buffered as they occur, and the active transaction serthess one
by one.

Finally, we should note that hardware TM systems (such as
Rock [3]) may cause transactions to abort not only due to it&ifl
but also due to the resource limitations such as overfloweddp-
tive caches, buffer overflows, etc. These cases do not cafisase
traps and triggers immediate aborts of transactions. Ihtttdware
resources are exceeded during the software validatioin@tance
if a speculatively loaded address is kicked out of the cacteetd
a capacity miss), the abort trap is recorded and serviceah Wie
transaction completes its software validation.

Figure 5 depicts the transactional operations performeteat
software layer.

3.4 Full-Hardware Implementation

In this section, we describe hoiS can be implemented fully in
hardware with our SON-based method. For this purpose, wé nee
to implement the additional features discussed in Sectidmothe
standard LL system we assume, effectively replacing th@atp
for 2PL with support foiICS. Below, we describe in generic terms
what such implementation looks like.

For each transaction, we need to store an SON lower bound and
an SON upper bound. Two general purpose registerand ub
can simply be reserved during the execution of transacfimrthis
purpose. Simple comparison instructions on these registar be
used to verify transactions (i.eb > Ib). A compiler can efficiently
place these comparison instructions inside transactioode (for
instance every few instructions, at the end of every loogiien,
etc.) in such a way to prevent inconsistency problems (agtic
faults, memory access violations, infinite loops, etc.)ilsimto
validation checks in software TM systems [12, 13, 14].

For each cache-line, we need to store a write-number and a
read-number in order to update the transaction SON lower and
upper bounds at transactional load and commit operations. T
techniques can be used for this: augmented cache lines audlvi
tables. With augmented cache lines, the write numbers amd th
read numbers are stored in the cache lines at a particulsetoff
The compiler can easily use padding techniques to allogatees
in each cache line for this purpose. However, doing this ler t



bool Transaction::openForRead(txObject* o) {
addtoReadList(o, o->getWriteTime());
return updateLowerBound(o->getWriteTime());
}
void Transaction::openForWrite(txObject* o) {
addtoWriteList(0);
}
bool Transaction::validate() {
for(int i=0; i <readListSize; i++) {
unsigned long writeTime = readList[i]->getWriteTime();
/I obj has been committed since tx read it
if(writeTime != readList[i]->getTime(i))
if(lupdateUpperBound(writeTime) == false)
return false;
}
return true;
}
bool Transaction::commit() {
for(int i=0; i < writeListSize; i++) {
if(lupdateLowerBound(writeList[i]->getWriteTime()) == false)
return false;
if(lupdateLowerBound(writeList[i]->getReadTime()) == false)
return false;
}
unsigned long SON = assignSON();
for(int i=0; i<writeListSize; i++) writeList[i]->setWriteTime(SON);
for(int i=0; i<readListSize; i++) readList[i]->setReadTime(SON);
return true;

}
Figure 5. Transactional operations under the hybrid model.

entire address space accessed by the program can sighjfic
increase the memory footprint. Hence, the user can speldy
structures/addresses that will be accessed inside ttasscso
that compiler can pad only these addresses at memory adinc:
time. This is similar to the programming model of most softeve
TM systems [15, 13].

The virtual tables technique, on the other hand, is basec
allocating a specific virtual address space to store talflegite
numbers and read numbers, indexed by the appropriate Idtger
of memory addresses. Although this technique does notnethe
analysis of shared address space, because the tables willebe
specific size, aliasing of addresses can cause unnecessaty. a

We elect to use augmented cache lines to store the write-

numbers to avoid aliasing. However, this technique is nitable

for read-numbers. This is because for every cache line fpecu

tively loaded, transactions need to updaidy the read numbers in

the cache line, not the data. This is hard to do because thalact
data in the cache line may have been changed in memory since

transaction loaded it. Therefore, we elect to use virtuales for
storing read-numbers.

Transactional load instruction will update the lower bowfic
transaction with the write-number of the cache-line. Axdésed
above, the lower bound is stored in a special regikteand the
write-number is either stored at a particular offset in thehe line
or a specific address in the virtual memory.

txload (addr):
if (Ib < [addr + offset]) Ib = [addr + offset]
insert (readBuffer,addr)

txstore (addr):

insert (writeBuffer,addr)

conflict (remoteSON):
if (remoteSON < ub) ub = remoteSON

txcommit:
acquireToken;
for each w in writeBuffer
if (Ib < [w +offset]) Ib = [w + offset]
if (Ib < readTime[w]) Ib = readTime[w]

serializabilty checks

if(ub <= Ib) { releaseToken, abort }

if(lub == 0) ub = Ib + numProc;
else ub=ub-1;

for each w in writeBuffer

selecting SON

[w + offset] = ub;

write-number and

broadcast(w, ub
( ) read-number updates

for each r in readBuffer
readTime[r] = ub

releaseToken

Figure 6. Transactional operations in hardware.

Other than standard transactional operations (storinglétta
in a store-buffer, setting cache flags, etc.), a transaatistore
instruction does not perform any additional transactioeragion
in our SON-based technique. The validity of stored addeegssk
be verified at commit time.

A conflict will occur when a transaction is committing a value
to an address previously loaded by another transactiohidcase,
the upper bound of the reader transaction must be updatadheit
SON of the committer transaction. This can simply be achidwe
broadcasting the SON of the committer transaction whenaheev
is being committed to the memory. When the reader transactio
detects the conflict, it updates its own upper bound.

Finally, before a transaction commits its modifications,Lip-
dates must be validated. For this purpose, the processaieissover
the write buffer and updates its lower bound with the writerater
and read-number of each stored address. If transactiomrizscio-
valid, the commit fails. Otherwise, the transaction is gissd an
SON and proceeds to committing read and write numbers. Becau
the SON lower bound and the SON upper bound will not be needed
after the transaction commits, thie and ub registers can be used
to store the SON of the transaction during commit. Comngttin
values is performed by iterating over the write set and ngitihe
values to the main memory together with the write-numbehe T
read-numbers also need to be updated; the transactiotegeneer
the read-set and stores the read-numbers in the virtual. tabl

Figure 6 describes the transactional hardware operations f
serializability.



4. Experimental Evaluation
In this section, we describe our experimental evaluatiorthef

two implementations of our SON-based technique. We use the

breakdown of conflicts and the breakdown of transactioni@t
cycles as evaluation metrics.

4.1 The Experimental Framework

We build our SON-based algorithm on top of a standaldhard-
ware TM implementation discussed in [4]. This system presid
base support for TM as described in Section 3.1. It is built us
ing Simics [16] full-system simulation infrastructure. discon-
sin GEMS toolset [17] provides support for customizing megmo
models. Simics accurately models the SPARC architectuith, w
in-order single-issue processors. The TM support is implaed
using magic instructions, i.e. special instructions catyhSimics
and passed onto the memory model. The simulated targetnsyste
runs Solaris 10 to provide OS support for applications.

For our simulations, we model a 8-core CMP version of this
implementation. Each core is in-order and single-issuecspia-
cessor. Each processor has 32 KB private writeback L1 | & D

caches. The 8 MB L2 cache is shared and consists of 32 banks

interleaved by block address. Cores and cache banks areaedn

Hybrid Implementation of SerializabilityHybSON). This is
the hybrid implementation of serializability describedSec-
tion 3.3. The underlying TM support is provided by the same
LL system mentioned above.

Ideal Hardware Implementation of Serializability HWSON).

In order to evaluate the maximum performance gain that can be
achieved using our SON-based technique, we implemented a
hardware system that provides ideal support for serialigab

This implementation is ideal in the sense that it does not in-
cur any additional overheads due to the SON-based technique
That is, accessing SON-tables, updating SON lower and upper
bounds, serializability checks are implemented as nokmaat
operations on top of the standatd hardware support de-
scribed above. There are two reasons why we pursue this ideal
implementation. The first is that at this stage our goal is¢to d
termine the limits on performance gains in hardware-basédd T
systems. The second reason is that we expect the overheads to
be minimal in the full implementation because the required e
tensions are simple.

The main advantage of our SON-based technique b\eis
lower abort rates due to the more relaxed serializabilitysts
tency model. Hence, by comparing the performance of thi ide

with a packet-switched tiled interconnect consisting oflisters
with 4 cores in each. Four on-chip memory controllers cotinec
to standard DRAM banks. Cache coherence is implemented with

hardware implementation with the performance of the stahda
hardware support, we can evaluate the upper bound on the per-
formance gain we can obtain by using our technique.

the MESI protocol and maintained with an on-chip directdria

cache backs.

4.2 Benchmarks

In order to assess the impact of serializability on perforoeqa we
used two standard microbenchmark applications commoelg tes

4.4 Experimental Results

We simulated an 8 processor system usinglthesimulator de-
scribed above, and compared the evaluated systems in téthes o
number of conflicts, total execution cycles and cycles vehdiee
to aborts.

evaluate TM systems:

4.3 Evaluated Systems
We evaluate three systems.

4.4.1 Conflicts

Figure 7 shows the breakdown of conflicts that occur durirgg th
execution of benchmark&L does not support serializability, and
thus all the conflicts are non-serializable and cause abdfith
HybSONandl HWSON, serializable conflicts do not cause conflicts;
transactions continue after validation. Wi bSQN, transactions
perform serializability checks and update SON tables. Phis
longs the time it takes transactions to commit. Becausesaan
ability when abort rates are high. tiqns acqqire tokens to se.rialize.commits, they stal[ uhel com-

o ) ) mit token is available, during which accesses of activesaations
Red-black TreeRBT). This is theRBT implementation used  may conflict with the accesses of this stalled transactiosudh a
in [2]. Each node in the tree contains a single key and trans- conflict occurs, the stalled transaction immediately abwithout
actions perform a 1:1:1 mix of insert, delete and lookup op- trapping to software for serializability validation. Thesonflicts
erations. The randomly generated keys range between 0 andare |abeled as the “caused by commit stall” bar in the figure.
16383, which limits the depth of the tree to 14 when the tree  For Lj st , the number of non-serializable conflicts is signifi-
is fully balanced. Keys range between 0 and 1023. The list is cantly lower inHybSON and inl HWSON compared td_L. More
randomly initialized to contain 16384 nodes and each proces gpecifically, we see that0.7% (3152 out of 3473) of conflicts in
sor performs 2048 operations, consisting of 1:1:1 mix oéiis | HySON are serializable and do not require aborts. The figure also
delete and lookup operations. The tree structure limitsitita  shows that the total number of conflicts remains almost threedar
sharing among transactions in this benchmark. Therefbi®, t || andl HWSON systems. This matches our expectations because
benchmark is useful to evaluate Se”a“zabl“ty under kvort the Consistency model imp|emented does not have any |mmct 0
rates. the accesses of transactions and how the accesses condlico-W
tice thatHy bSON incurs more conflicts in total. This is due to the
conflicts caused by commit stalls as described above. If wiids
these conflicts, the total number of serializable and noiaismble
conflicts are the same tHybSON andl HWSON. This again shows
LL. In order to evaluate a standard transactional memoryrsyste that implementing a different consistency model does rfetathe
which is based on the 2PL consistency model, we use the access patterns of applications and hence the number ofatenfl

Linked-List (Li st ). This is a straight-forward implementation

of an ordered linked-list, where each node contains a skeyle
and the nodes are singly-linked to each other. Keys range be-
tween 0 and 1023. The list is randomly initialized to contain
1024 nodes and each processor performs 512 operations con
sisting of 1:1:1 mix of insert, delete and lookup operations
Since there is extensive data sharing between transadgtions
this benchmark, it allows us to evaluate the impact of serial

LL hardware transactional memory system discussed in [4].
Analyzing hardware resource constraints is outside thpesob
this paper, and thus we assume an infinite write buffer inrorde
to eliminate transactional buffer overflows.

For RBT, bothLL and| HWSON incur few conflicts due to the
tree structure of the application. The number of non-seghle
conflicts is almost the same HybSON and | HMSON. However,
HybSON incurs significantly more non-serializable conflicts. This
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Figure 7. Breakdown of conflicts.

Table 1. Execution Cycles for Linked list.

Wasted Cycles| Total Cycles
LL 3,576,285 | 13,840, 741
HybSON 4,235,209 | 64,843,198
IHWSON 404,512 | 11,028,933

Table 2. Execution Cycles for Red-black tree.

Wasted Cycles| Total Cycles
LL 38,582 | 9,376,218
HybSON 97,200 | 18,934,679
IHWSON 67 9,675, 622

is due to the fact that, as it will be discussed below, tranzas
take longer to execute iy bSON. Thus, while transactions are too
short to conflict inLL or in | HWSON, they are more susceptible
to conflicts inHybSON due to longer execution. We also see that
HybSON suffers from a number of conflicts caused by commit
stalls.

4.4.2 Cycles

Table 1 and Table 2 show the total execution cycles it takes to
run each benchmark and the execution cycles for each parcess
wasted due to aborted transactions. Fost , we see that HVSON
take the fewest cycles to execute. I122i3.3% faster compared to
LL. The difference in the number of execution cycles between
LL and | HWSON (2,811,808) is almost equal to the difference
in the number of wasted cycles due to the aborts (3,171,765).
Thus, we can conclude thatHwSON is faster thanLL mostly
because the number of wasted cycles due to aborts is lowéngru
for HybSQON, the execution is 4.6 times longer compared_ta
This is due to the overheads of software layer that perfortraex
bookkeeping and checks for serializability. These ovelhesso
increase wasted cycles as shown in the figure.

For RBT, againl HWSONtakes the fewest cycles to execute, and

HybSON takes the most due to the software overheads. Because

the abort rates are very low and transactions are shortptheadt
of wasted cycles on performance is very small.

Figure 8 shows the breakdown of total execution cycles. We no
tice similar patterns for both benchmarks. First, fgrb SON, we
see that 26% of execution time is spent in software trapsder s
rializability checks on average. Further, 10% of executiare is
spent for software validation, another 10% is spent for cdropx
erations, and 25% of execution time is spent on stalling éonmit
token. These represent the overheads of having a softwamefta
implementing serializability. Second HVSON transactions spend
less time on transactional operations on average, evelhine
time spent for non-transactional operations is the samd.iand
I HWSON. This is due to the impact of fewer aborts and hence, fewer
wasted cycles. Finally, fdrL, the execution time mostly consists of
time spent for transactional actions and non-transadtiosguc-
tions. The impact of commit time and aborting transactiai
significant.

We have been limited by the time to run the simulations. This
in turn, limited the length of transactions in our benchmaipipli-
cations in comparison to what we used in the past for our soétw
based implementation @fS. We expect that with longer running
transactions that the benefit of the full hardware impleatson
will only improve.

5. Related Work

In our previous work [2], we described how conflict-seriabiity

can be implemented using our SON-based technique in a soft-
ware TM system. We demonstrated that such a relaxed comgjste
model can improve performance by lowering the abort rates, e
pecially for applications with long running transactiomslehigh
levels of data sharing. Conflict-serializability is a wklown con-
cept in the database domain [18]. Thus, our contributiorhig t
regard was to successfully employ and implement this mackbla
domain of TM systems.

There has been several other approaches to relaxing consis-
tency models in TM systems. Calstrom et al. [19] assert tirag-
running transactions are important for the ease of paraitgram-
ming and recognize that the use of 2PL limits concurrencgyTh
propose transactional collection classes to reduce thebeuof
conflicts and demonstrate its use for some example datetistes.
However, their approach requires knowledge of the senmuwfic
data structures and the dependencies that exist.

Riegel et al. [20, 21] investigate the use of snapshot iswlat
which allows transactions to access old versions of shastd d
when there exist conflicts over the new versions. Snapsht-is
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Figure 8. Breakdown of transaction execution.

tion does not provide serializability nor linearizabilityhen old
versions are used. It requires that programmer shouldwubrei-
alyze the accesses and transform some read accesses tacarite
cesses for correctness. If linearizability is requireépshot isola-
tion again resorts to 2PL to ensure correctness.

Several software/hardware hybrid implementations of Tt sy
tems have been proposed in the literature. Most noticeBlalyiron
et al. [22] proposed the Hybrid Transactional Memory systieat
switches between hardware and software transactions dieggemn
the availability of hardware resources. Further, Lev epadposed
the Split Hardware Transactions that implement a softwayerl
on top of a standard hardware support for TM. The functidyali
of the software layer was to provide atomicity for parenhgac-
tions that are split into multiple child hardware transaiesi. Both
of these hybrid TM implementations are based on the 2PL sensi
tency model, whereas in our work we use the software layelsor
the consistency model used by the hardware implementation.

6. Conclusions

In this paper, we discussed how conflict-serializabilitpsistency
model can be supported in a base TM hardware system with lazy
conflict detection and lazy version management. We discutbee
type of additional features that are necessary to implecuanrftict-
serializability in any hardware-based system. We furtlesicdbed
both a hybrid system where serializability is implementadaa
software layer on top of a base hardware system, as well asensy
that extends the base system to support conflict-seridiigethlly

in hardware.

Using a simulator and two representative benchmarks, we eva
uated both the hybrid system and an ideal version of the &rlti-h
ware system that incurs no overheads due to serializabllhis
ideal system gives us an upper bound on the performancetfains
can be achieved using serializability before we implemkeatfull
hardware system. Our evaluation shows lower abort ratestim b
cases. However, the hybrid system is 2-5 times slower cosdpar
the base hardware due to the overheads of bookkeeping asid-con
tency checks in software. The ideal hardware system, onttiex o
hand, is faster than the base system because the cost of &ort
lower. This difference in performance can be significat®. 4%
for linked list) when the cost of aborts is high in the basalheare
system, such as in applications with long running transastand
high degree of conflicts.

Based on our results, we conclude that the hybrid solution is

not viable for typical benchmarks, and should only be carsd

for applications that suffer from excessive aborts yet vsitiall
amount of bookkeeping. The ideal hardware system, on ther oth
hand, validates our expectations that reducing the abi@$ m@osi-
tively affect overall performance. We believe that an effitihard-
ware implementation of serializability can take advantaiglhe SS
consistency model to improve performance.
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