
Hardware Support For Serializable Transactions:
A Study of Feasibility and Performance

Utku Aydonat Tarek S. Abdelrahman
Edward S. Rogers Sr. Department of
Electrical and Computer Engineering

University of Toronto
{uaydonat,tsa}@eecg.toronto.edu

Abstract
The conflict-serializability consistency model can reduceabort
rates and improve performance in software transactional mem-
ory (TM) systems. We discuss how this model can be supported on
hardware-based TM systems. We consider a hybrid implementation
where serializability is implemented as a software layer ontop of a
base hardware TM system. We also extend the base hardware TM
system to fully support serializability in hardware with minimal
compiler support. We implement and evaluate the hybrid system
and an ideal version of the full hardware system. Our evaluation
using two typical benchmarks shows that support for serializabil-
ity in hardware-based TM systems results in reduced conflicts.
However, the overhead of software in the hybrid implementation
eliminates any benefits; performance is 2-5 times slower compared
to the base hardware system. In contrast, the ideal hardwaresystem
improves performance by up to23.2%, because of the reduction
in the aborts. We conclude that with efficient implementations in
hardware, conflict-serializability can improve performance, espe-
cially for applications with high cost of aborts.

1. Introduction
The emergence of multi-cores into mainstream computing has
given Transactional Memory (TM) systems considerable popular-
ity. This is mainly because TM promises to facilitate parallel pro-
gramming, resulting in performance that is comparable to that of
fine-grain locking with the programming simplicity of coarse-grain
locking. In essence, TM systems provideatomicity, consistency
and isolation for the shared-data accesses within critical sections,
called transactions[1]. Over the last few years, several software
of hardware implementations of TM systems have been proposed,
differing mainly in how they ensure that these criteria are met. In
general, the design space of TM systems (whether implemented in
software or in hardware) spans the space generated by various ap-
proaches to: (1) when conflicts between transactions are detected,
(2) where the updates made by transactions are kept, (3) which
transactions, in the case of conflicts, are aborted, and (4) how the
consistency of reads is ensured. The exhaustive investigation of this
design space resulted in both an understanding of trade-offs among
approaches and in performance that is close to that of fine-grain
locking for applications with short transactions and low degree of
data sharing.

In contrast, TM systems fail to provide acceptable performance
levels for applications with long-running transactions and high-
degrees of data sharing [2]. This is mostly due to the fact that
software (and indeed hardware) TM systemsimitate a two-phase

locking (2PL) model to ensure the consistency of shared-data1. Un-
der 2PL, transactions are aborted or delayed, if they perform con-
flicting accesses. Although 2PL is simple to implement and does
provide fast transactional operations, it may be overly-restrictive
and may degrade performance by causing unnecessary aborts [2].
Consequently, we have been investigating consistency models as
yet another dimension of the TM design space. More specifically,
we have explored the use of conflict-serializability (CS) instead of
2PL [2]. We demonstrated that theCS model can outperform 2PL
in a software TM system for applications with long-running trans-
actions and high data sharing, mainly because of the reduction in
abort rates. Although the use ofCS introduces overheads due to
extra bookkeeping and consistency checks, the benefits outweigh
the overheads for such applications.

The popularity and benefits of TM is leading many research
groups to consider hardware systems that provide TM support. Fur-
thermore, one commercial system Sun Microsystem’s Rock Archi-
tecture has emerged recently [3]. This motivates us to consider sys-
tems and algorithms that take advantage of the TM features that
are available now, or may commercially become available in the
near future. In this paper, we investigate how to leverage suchbase
hardware support for conflict detection and atomic commits to ef-
ficiently implementCS . We first describe the support that must ex-
ist to realizeCS in any hardware-based TM system. We then con-
sider two approaches to implementing this support. First, we con-
sider a hybrid approach in whichCS is implemented in a software
layer that utilizes the base support without modifying it. Second,
we extend the base hardware support for conflict detection and ver-
sion management to fully implementCS in hardware with minimal
compiler support.

We evaluate the two approaches using a simulator of the LL
(lazy version management, lazy conflict detection) hardware-based
TM system proposed in [4]. We fully implement the hybrid ap-
proach on top of the simulator, which allows us to understandthe
benefit-performance tradeoffs that exist with this approach. We also
extend the simulator with an ideal version of hardware that imple-
mentsCS but incurs no hardware overhead due toCS . This allows
us to determine an upper bound on the performance gains that can
be achieved by fully supportingCS in hardware.

Our evaluation shows that the use ofCS reduces abort rates in
both the hybrid and hardware implementations. However, in the
hybrid implementation, the overheads of theCS software outweigh
the benefits of reduced abort rates, reducing performance bya fac-
tor of 2-5 times compared to the base system. In contrast, theideal
hardware implementation improves application performance. For

1 The actual implementation may not necessarily be lock-based and in fact
may use optimistic concurrency.

1



a linked-list application, which has long-running transactions and
high abort rates, the improvement over the base hardware system
is significant, about 23%. However, for a red-black tree applica-
tion, which has short-running transactions and low abort rates, the
benefit is (as expected) minimal at about 1.4%. These results lead
us to conclude that it is unlikely for a hybrid implementation to be
viable in practice but encourage us to pursue a detailed hardware
implementation that supportsCS .

The remainder of the paper is organized as follows. Section 2
reviews transactional memory, consistency models implemented by
transactional memory systems, the design space of hardwaretrans-
actional memory systems and our earlier software-based method
for implementingCS . Section 3 discuses howCS can be imple-
mented using our method on an LL hardware-based TM system.
More specifically, it discusses the type of support that is necessary
and how this support can be realized in a software layer on topthe
LL system or fully in hardware. Section 4 presents our evaluation
of these two implementations using simulation and representative
benchmarks.

2. Background
In this section, we give a brief overview of transactional mem-
ory and the consistency models implemented by transaction mem-
ory systems. Further, we describe our previous work on using
serializability order numbers (SONs) to implement the conflict-
serializability consistency model in software TM systems.

2.1 Transactional Memory

A transaction is a sequence of instructions that access and modify
shared data and that satisfies atomicity, consistency and isolation
criteria. Respectively, these criteria imply that (1) the effects of
transactions appear to be performed instantaneously all together, or
none of them are performed, (2) the state of shared data is always
consistent, and (3) data modified by a transaction cannot be seen by
other transactions until the transaction successfully completes.

A transaction can perform a number of read and write actions
between its start and commit. Thescheduleor thehistoryof a set of
transactions is the list the actions performed by transactions in the
order they happen in real time. Aconflict is said to exist between
two actions if the actions belong to different transactions, these
actions access the same address, and at least one of these actions
is a write. A serial scheduleis a schedule in which the actions
of one transaction do not interleave with the actions of another.
Two schedules are said to beconflict-equivalentif: (1) they contain
exactly the same actions, and (2) the order of the conflictingactions
is the same. Two schedules are said to beview-equivalentif: (1)
they contain exactly the same actions, and (2) the results ofthe
execution is the same (i.e. the same values are read and the final
state of the system is the same).

Transaction memory (TM) systems guarantee that transactional
actions executed by concurrent threads appear to be performed
in some serial order without any interference. That is, the effects
of these actions will be the same as if the transactions executed
sequentially in some serial order. If the accesses of a transaction
cannot be ordered properly, the transaction must be aborted.

2.2 Consistency Models

A consistency model determines how the actions of concurrent
transactions can be ordered to match an equivalent sequential ex-
ecution. Given a particular schedule, a more relaxed a consistency
model can find a larger set of equivalent serial schedules. That is,
transactions have a better chance of successfully committing.

We discuss three main consistency models that can be im-
plemented by transactional memory systems:2-phase locking,

Figure 1. A schedule valid under 2PL.

linearizability and conflict-serializability. We demonstrate that
2-phase locking is more strict than linearizability and conflict-
serializability, allowing fewer schedules to be valid.

2.2.1 2-Phase Locking (2PL)

2PL does not allow conflicting accesses while a transaction is run-
ning. If such an access occurs, either one of the conflicting trans-
actions is aborted, or the conflicting access is delayed. 2PLis il-
lustrated in Figure 1, which shows the schedule of two transac-
tions TX1 and TX2 that make read and write accesses to addresses
A, B, C, and D. The read actions are represented by empty cir-
cles, whereas write actions are represented by solid circles. In the
schedule shown, TX1 and TX2 perform conflicting accesses on
addresses B and C. Thus, either one of the transactions must be
aborted (obstruction-free software TM systems), or TX2 must wait
until TX1 completes (blocking software TM systems) as indicated
by the dashed arrow in Figure 1. Conversely, TX2 can perform its
access to address A without aborting or stalling because this access
does not conflict with TX1.

Note that in this paper, we use the term2PL to refer to a
consistency model rather than an actual implementation. That is, a
TM system canimitatea locking-based implementation (i.e. admit
the same schedules) even if it is not lock-based. For instance,
the software or hardware TM systems that implement optimistic
concurrency models (such as TCC [5] and TL2 [6]) allow active
transactions to commit even if they show theirintentionsto write to
the same locations during execution. However, these systems in fact
implement the 2PL consistency model by delaying the actual writes
until commit time, just like in the example shown in Figure 1.

2.2.2 Linearizability

A schedule S is said to be linearizable if:

1. It is view-equivalent to some legal serial schedule Sser, and

2. The transaction partial order induced by S is a subset of the
operation partial order induced by Sser.

The first rule states that if a schedule is linearizable, it should
be possible to obtain a serial legal schedule Sser by just reordering
the actions of transactions in such a way that the final outcome of
execution would remain the same. The second rules imposes that
the order of transactions must remain the same in Sser. That is, if
a transaction TX1 completes before another transaction TX2starts
executing, all the actions of TX1 must come before all the actions
of TX2 in Sser. In fact, we can say that under linearizability, the
execution is equivalent to some execution such that each transaction
happens instantaneously at some point, calledlinearization point
between the start and commit. Finding a linearization pointfor all
the transactions is called alinearization.

The schedule in Figure 2 is invalid under 2PL because TX2
makes conflicting accesses on addresses B and C before TX1 com-
pletes its execution. The schedule, on the other hand, is linearizable
because TX1→ TX2 → TX3 (i.e. all the actions of TX1 precedes

2



Figure 2. A linearizable schedule invalid under 2PL.

Figure 3. A serializable but non-linearizable schedule.

all the actions of TX2 and all the actions of TX2 precedes all the
actions of TX3) is a valid linearization. This linearization produces
the same outcome as the concurrent execution (the same values are
read and written) and respects the partial order of transactions (TX3
comes after TX1 and TX2).

2.2.3 Conflict-Serializability

A schedule is said to be conflict-serializable (or simply serializable)
if it is conflict-equivalent to some legal serial schedule. Thus, seri-
alizability, unlike linearizability, does not require a partial order of
transactions to be preserved. The schedule in Figure 3 is serializ-
able because TX3→ TX1 → TX2 is a valid ordering of transac-
tions with respect to the order of the conflicting accesses. However,
this schedule is not linearizable because linearizabilityimposes the
additional ordering of TX2→TX3 based on the order of the start
and commit times of transactions. This requirement contradicts the
previous ordering of transactions which is based on the order of the
conflicting accesses.

Note that conflict-serializability is based on finding conflict-
equivalent serial schedules, and hence it is different fromother
models such as sequential consistency, linearizability, view se-
rializability and strict serializability which are based on view-
equivalence of schedules. Thus, just like 2PL and linearizability,
conflict-serializability also presents an intiutive modelto the pro-
grammer, where transactions observe the final committed values of
shared data. Yet, conflict-serializability is more relaxedthan 2PL
and linearizability because it does not impose any order on trans-
actions and, therefore it allows more concurrency.

2.3 SON-Method for Serializability

In our previous work [2], we proposed a method for efficientlyim-
plementing conflict-serializability in a software transactional mem-
ory system. We showed that the use of serializability is beneficial
to performance, particularly for applications that have a large de-
gree of data sharing, and thus are difficult to execute efficiently with
2PL.

Our method attempts to incrementally construct a conflict-
equivalent sequential schedule based on the actions of transactions.

If such a schedule can be constructed then the transactions are se-
rializable. The conflict-equivalent serial schedule is constructed by
determining aserializability order number(SON) for each trans-
action. The SON is an integer that indicates the relative order of a
transaction among all transactions in the conflict-equivalent serial
schedule that is being constructed. During execution, the SONs
of transactions are determined based on the relative order of their
conflicting actions. That is, the transaction that performsits access
first will have a smaller SON because, in any conflict-equivalent
schedule, the relative order of the conflicting actions mustbe the
same, as described above. If a unique SON can be determined
for each transaction, then a conflict-equivalent serial schedule ex-
ists. Further, we can conclude that all read/write/commit actions of
transactions atomically happen in the order of their transaction’s
SONs.

The SONs of transactions are determined using the following
two basic rules:

1. If a transaction TX1 accesses (reads or writes) an addressthat
has already been committed by another transaction TX2, then
TX1’s SON must be be higher than that of TX2. This is because
the access of TX1 happen later than the access of TX2.

2. If a transaction TX1 reads an address that is later committed by
another transaction TX2, then TX1’s SON must be lower than
that of that of TX2. This is because TX1’s read action happens
earlier than the commit action of TX2.

The first rule imposes a lower bound on the SON of a trans-
action. Similarly, the second rule imposes an upper bound onthe
SON of a transaction. Thus, we associate with each transaction a
pair of integer values that reflect the lower and upper boundson
its SON. The lower bound of a transaction is initialized to 0,and
the first rule is repeatedly used to increase it. The upper bound is
initialized to∞ and the second rule is used to lower it. If at any
moment during execution, the lower bound on the SON for a trans-
action becomes equal to or higher than its upper bound, this trans-
action cannot be placed in a conflict-equivalent serial schedule. In
this case, the transaction aborts.

If a transaction performs all its accesses without aborting, it
starts its commit phase during which it examines its SON range
and determines a specific SON. If the upper bound of the range is
not ∞, then it reflects the SON of some conflicting transaction.
Therefore, the SON of the transaction is selected as the upper
bound minus one2. If the upper bound is∞, then the SON of the
transaction is set to the lower bound plusn, wheren is the number
of threads.

2.4 Hardware TM Systems

Previous studies on TM have shown that minimal hardware sup-
port can provide fast transactions [1, 7] in spite of limitations
of available resources. Cache coherence protocols provideelegant
and efficient ways for detecting conflicts, with minimal extensions
over standard protocols. In addition, hardware buffers, broadcast-
ing, hardware tokens, transactional status bits for cache lines are all
simple hardware techniques that can be used to provide isolation of
stores and fast atomic commits for transactions. Below we discuss
different design choices that can be implemented in a hardware TM
system.

1. Eager/Lazy Conflict Detection (CD). With eager conflict de-
tection, conflicts are immediately detected as the accesseshap-
pen. With lazy conflict detection, on the other hand, conflicts

2 The selection of integer numbers as SONs imposes the additional con-
straint that lower bound cannot be upper bound minus one.

3



are detected when transactions commit and broadcast their up-
dates to other transactions.

2. Eager/Lazy Version Management (VM). With eager version
management, active transactions perform their updates in place
(in cache or memory); each keeps a log of old-values. With lazy
version management, old values are kept in place and updates
are buffered in a private per-processor transactional buffer until
commit time. Lazy version management provides fast aborts,
because the old values are kept in place, whereas the eager
version management provides fast commits because the new
values are kept in place.

3. Conflict Management (CM). When a conflict happens, con-
flict management algorithm dictates what type of action mustbe
taken. Three types of actions can be taken depending on which
transaction wins the conflict:committer wins, requester wins
andrequester stalls. With requester stalls, updates that conflict
with previous accesses are stalled until the accessor transaction
commits. A conflict causes an abort only if a stall potentially
cause a deadlock.

Depending on the design choices they implement, we can clas-
sify hardware TM systems into three main types [4]:

1. Lazy CD/Lazy VM/ Committer Wins . These systems are re-
ferred to asLL systems. TCC [5] and Bulk [8] are the main
hardware systems of this type. To perform atomic writes, LL
systems acquire commit tokens [9], and to ensure forward
progress, they follow the committer wins policy.

2. Eager CD/Lazy VM/Requester Wins. These systems are re-
ferred to asEL systems.LTM [10] is an example TM system of
this type.

3. Eager CD/Eager VM/Requester Stalls. These systems are
referred to asEE systems.LogTM implementations [11, 7] are
the main representatives for this type of hardware support.

The well-known hardware TM systems proposed in the litera-
ture are based on the 2PL consistency protocol. That is, a trans-
action can commit if and only if it does not conflict with another
transaction from start to commit. Any conflict causes one of the
conflicting transactions to abort or to be delayed.

3. Hardware-Based Implementation of
Serializability

In this section, we discuss how serializable transactions can be im-
plemented using our SON-based technique by taking advantage of
a base hardware support for transactional memory. We start with
the description of this base support. Then, we present the addi-
tional support required to implement our SON-based technique for
serializability on top of this basic hardware support. Specifically,
we discuss the additional transaction metadata that needs to be
stored, and the operations that need to be performed for eachtrans-
actional load, transactional store, conflict and transaction commit.
We discuss both a software/hardware hybrid implementationand
in generic terms a full hardware implementation. The hybridim-
plementation assumes only the minimal TM hardware support of
the base system; serializability is implemented as a software layer
on top of the hardware. The full hardware implementation incor-
porates serializability support in hardware by extending the base
hardware TM support and assumes minimal compiler support.

3.1 Base Hardware TM Support

The base hardware system we consider is an LL system with lazy
conflict detection/lazy version management [4]. This choice is
mandated by the fact that SONs are selected at commit time. More

specifically, the second rule of our SON-based method statesthat if
a transaction writes to an address already accessed (read orwritten)
by another transaction, the upper bound of the accessor transaction
must be updated with the SON of the writer transaction. Since
SONs are determined at commit time, our technique requires that
conflicts are detected when the writer transaction commits.How-
ever, when the write access actually happens, the writer transaction
is not yet assigned an SON (let alone know if it will successfully
commit). Thus, the hardware support for our SON-based tech-
nique must use lazy conflict detection that detects the conflicts
when transactions commit their writes. This allows the SON of the
committing transaction to be communicated with other conflicting
transactions.

3.2 Serializing Transactions

We believe that serializability can be implemented as the consis-
tency model using our SON-based technique, on top of our base
system. Below, we discuss what type of additional support (either
in software or in hardware) is necessary for this purpose.

• Transaction Metadata. In addition to the traditional read and
write sets kept for detecting conflicts, an SON lower bound and
an SON upper bound must be stored for each transaction.

• Transactional Load. When a load instruction is issued, the
transaction must (1) update its lower bound with the write-
number associated with the address, (2) verify that the transac-
tion itself is still valid by comparing its lower and upper bounds.
These operations are in addition to the operations performed by
a typical TM system, such as adding the loaded address to the
read-set.

• Transactional Store. When a store instruction is issued, our
SON-based technique does not require any additional opera-
tion. Since the store value is buffered and the address can be
written to by other transactions several times until the trans-
action commits, it is more efficient to perform the serializabil-
ity check (updating lower bound and comparing it with upper
bound) at commit time.

• SON-Tables. We need to store: (1) For each address written to
by any transaction, the SON of the transaction that wrote to the
address, which we refer to as thewrite-number, (2) For each
address read by any transaction, the SON of the last transaction
that read the address and committed successfully, which we
refer to as theread-number.

• Conflicts. In traditional transactional memory implementa-
tions, conflicts cause transactions to abort. In our SON-based
technique, a conflict triggers a serializability check. Since we
are assuming a LL system, a conflict happens between a trans-
action that is trying to commit a value to an address, and a trans-
action that already accessed the same address. The committer
transaction cannot abort, and thus the reader transaction should
update its upper bound with the SON of the committer transac-
tion and verify that it is still valid. For this purpose, the conflict
triggers a validation, during which the reader transaction(1) it-
erates over its read set to find which address was updated since
the last validation, (2) updates itsown upper bound with the
write-number associated with this address.

• Transaction Commit. When a transaction commits, it must
validate its writes. For this purpose, it (1) iterates over its write
set and updates its lower bound with the write-number associ-
ated with each address it wrote to, (2) iterates over its readset
and updates its lower bound with the read-number associated
with each address it read, (3) verifies that it is still valid.Af-
ter the validation, the transaction selects an SON and commits
by (1) updating write-numbers for each address in its write-

4



Figure 4. Lookup method under the hybrid programming model.

set, (2) updating read-numbers for each address in its read-set.
Then, the transaction is ready to perform the traditional hard-
ware commit operation storing the values in memory and in-
forming other transactions of conflicts.

3.3 Hybrid Implementation

In this section, we discuss how the above-mentioned additional
support for our SON-based technique can be implemented as a soft-
ware layer on top an LL system with only 2PL-based hardware
support. For this purpose, we need to (1) implement library calls
for transactional load, store and commit actions, (2) storetransac-
tional metadata in software, (3) maintain write-numbers and read-
numbers in software and (4) implement software traps for conflict
handling. We discuss how these are done below.

Library calls are used to perform serializability checks, before
transactional load, store and during commit actions. Because in-
serting calls before each load and store instruction is inefficient and
impractical, we choose to use object-level conflict detection in the
software layer, even though conflicts are still detected at the cache
line level by the hardware. That is, before accessing a field of an
object, software routines are called toopenthe object in either read
or write mode at which point serializability checks are performed.
Thus, shared objects of target applications inherit from atransac-
tional objectclass which implements these open methods and other
transactional data members that will be mentioned later. Figure 4
shows how the library calls are used for the lookup method of a
linked list class.

The transactional metadata consists of an SON lower bound, an
SON upper bound, a read-set and a write-set for each transaction
and stored in aTransactionclass instance. The read-numbers and
write-numbers are stored as data members of transactional objects.
These numbers are read to perform serializability checks inside
open and commit library calls, and they are updated during commit
with the SON of the committing transaction. Since transactional
objects are shared by all transactions, accesses to these data mem-
bers are subject to race conditions. To avoid these race conditions,
readings of the read-numbers and the write-numbers are performed
as non-transactional operations. However, updates are performed as
transactional operations. This ensures that updates of read-numbers
and write-numbers are atomic and are discarded if the transaction
aborts.

Software traps are used to switch to software routines to per-
form serializability validation when conflicts occur. Conflicts are
triggered during the execution of an active transaction, ifthe trans-
action has already accessed an address which is currently being
committed by another transaction. At this point, the activetransac-
tion traps to a software trap handler which calls a validation method
for this transaction. Before the trap is serviced, the program context
(program counter, registers, etc.) are saved to allow the transaction
to continue execution after the trap. The validation methoditerates
over the read-set of the active transaction and tries to find the ob-

jects that were committed since they were opened in read modeby
the transaction. These are the objects whose write-numbershave
changed since they were opened. If such an object is found, the ac-
tive transaction updates its upper bound with the write-number of
the object and verifies that the upper bound is still higher than the
lower bound. If the transaction is still valid, it continuesexecution
by re-loading its saved context. If the transaction is invalid, it exe-
cutes an abort instruction which causes the hardware transaction to
abort and restart.

Note that, in order to avoid inconsistent state, the validation
method must update its upper bound with the write-number of the
object associated with the conflicting address that triggered the val-
idation. That is, the write-number of this object must be visible
to the active transaction when it performs the validation. Because
write-numbers are updated with transactional actions, these updates
are buffered inside hardware transactional buffers and become vis-
ible to other transactions only when transactions commit. Thus, we
must make sure that a committer transaction commits the write-
numbers of transactional objects first before it commits itsupdates
which may cause conflicts. We can simply ensure this by making
transactions to commit their updates in a LIFO (last in first out) or-
der. This is because software commits are invoked just before hard-
ware commits and hence write-numbers are always the last entries
in transactional buffers.

Further, while a conflict is being handled, other conflicts can
still be triggered by committing transactions. These conflicts are
buffered as they occur, and the active transaction servicesthem one
by one.

Finally, we should note that hardware TM systems (such as
Rock [3]) may cause transactions to abort not only due to conflicts,
but also due to the resource limitations such as overflow of specula-
tive caches, buffer overflows, etc. These cases do not cause software
traps and triggers immediate aborts of transactions. If thehardware
resources are exceeded during the software validation (forinstance
if a speculatively loaded address is kicked out of the cache due to
a capacity miss), the abort trap is recorded and serviced when the
transaction completes its software validation.

Figure 5 depicts the transactional operations performed atthe
software layer.

3.4 Full-Hardware Implementation

In this section, we describe howCS can be implemented fully in
hardware with our SON-based method. For this purpose, we need
to implement the additional features discussed in Section 3.2 to the
standard LL system we assume, effectively replacing the support
for 2PL with support forCS . Below, we describe in generic terms
what such implementation looks like.

For each transaction, we need to store an SON lower bound and
an SON upper bound. Two general purpose registers,lb and ub
can simply be reserved during the execution of transactionsfor this
purpose. Simple comparison instructions on these registers can be
used to verify transactions (i.e.ub> lb). A compiler can efficiently
place these comparison instructions inside transactionalcode (for
instance every few instructions, at the end of every loop iteration,
etc.) in such a way to prevent inconsistency problems (arithmetic
faults, memory access violations, infinite loops, etc.) similar to
validation checks in software TM systems [12, 13, 14].

For each cache-line, we need to store a write-number and a
read-number in order to update the transaction SON lower and
upper bounds at transactional load and commit operations. Two
techniques can be used for this: augmented cache lines and virtual
tables. With augmented cache lines, the write numbers and the
read numbers are stored in the cache lines at a particular offset.
The compiler can easily use padding techniques to allocate space
in each cache line for this purpose. However, doing this for the

5



Figure 5. Transactional operations under the hybrid model.

entire address space accessed by the program can significantly
increase the memory footprint. Hence, the user can specify the
structures/addresses that will be accessed inside transactions, so
that compiler can pad only these addresses at memory allocation
time. This is similar to the programming model of most software
TM systems [15, 13].

The virtual tables technique, on the other hand, is based on
allocating a specific virtual address space to store tables of write
numbers and read numbers, indexed by the appropriate lower bits
of memory addresses. Although this technique does not require the
analysis of shared address space, because the tables will beof a
specific size, aliasing of addresses can cause unnecessary aborts.

We elect to use augmented cache lines to store the write-
numbers to avoid aliasing. However, this technique is not suitable
for read-numbers. This is because for every cache line specula-
tively loaded, transactions need to updateonly the read numbers in
the cache line, not the data. This is hard to do because the actual
data in the cache line may have been changed in memory since
transaction loaded it. Therefore, we elect to use virtual tables for
storing read-numbers.

Transactional load instruction will update the lower boundof a
transaction with the write-number of the cache-line. As discussed
above, the lower bound is stored in a special registerlb and the
write-number is either stored at a particular offset in the cache line
or a specific address in the virtual memory.

Figure 6. Transactional operations in hardware.

Other than standard transactional operations (storing thedata
in a store-buffer, setting cache flags, etc.), a transactional store
instruction does not perform any additional transaction operation
in our SON-based technique. The validity of stored addresses will
be verified at commit time.

A conflict will occur when a transaction is committing a value
to an address previously loaded by another transaction. In this case,
the upper bound of the reader transaction must be updated with the
SON of the committer transaction. This can simply be achieved by
broadcasting the SON of the committer transaction when the value
is being committed to the memory. When the reader transaction
detects the conflict, it updates its own upper bound.

Finally, before a transaction commits its modifications, its up-
dates must be validated. For this purpose, the processor iterates over
the write buffer and updates its lower bound with the write-number
and read-number of each stored address. If transaction becomes in-
valid, the commit fails. Otherwise, the transaction is assigned an
SON and proceeds to committing read and write numbers. Because
the SON lower bound and the SON upper bound will not be needed
after the transaction commits, thelb andub registers can be used
to store the SON of the transaction during commit. Committing
values is performed by iterating over the write set and writing the
values to the main memory together with the write-numbers. The
read-numbers also need to be updated; the transaction iterates over
the read-set and stores the read-numbers in the virtual table.

Figure 6 describes the transactional hardware operations for
serializability.

6



4. Experimental Evaluation
In this section, we describe our experimental evaluation ofthe
two implementations of our SON-based technique. We use the
breakdown of conflicts and the breakdown of transaction execution
cycles as evaluation metrics.

4.1 The Experimental Framework

We build our SON-based algorithm on top of a standardLL hard-
ware TM implementation discussed in [4]. This system provides
base support for TM as described in Section 3.1. It is built us-
ing Simics [16] full-system simulation infrastructure. The Wiscon-
sin GEMS toolset [17] provides support for customizing memory
models. Simics accurately models the SPARC architecture, with
in-order single-issue processors. The TM support is implemented
using magic instructions, i.e. special instructions caught by Simics
and passed onto the memory model. The simulated target system
runs Solaris 10 to provide OS support for applications.

For our simulations, we model a 8-core CMP version of this
implementation. Each core is in-order and single-issue sparc pro-
cessor. Each processor has 32 KB private writeback L1 I & D
caches. The 8 MB L2 cache is shared and consists of 32 banks
interleaved by block address. Cores and cache banks are connected
with a packet-switched tiled interconnect consisting of 2 clusters
with 4 cores in each. Four on-chip memory controllers connect
to standard DRAM banks. Cache coherence is implemented with
the MESI protocol and maintained with an on-chip directory at L2
cache backs.

4.2 Benchmarks

In order to assess the impact of serializability on performance, we
used two standard microbenchmark applications commonly used to
evaluate TM systems:

• Linked-List (List). This is a straight-forward implementation
of an ordered linked-list, where each node contains a singlekey
and the nodes are singly-linked to each other. Keys range be-
tween 0 and 1023. The list is randomly initialized to contain
1024 nodes and each processor performs 512 operations con-
sisting of 1:1:1 mix of insert, delete and lookup operations.
Since there is extensive data sharing between transactionsin
this benchmark, it allows us to evaluate the impact of serializ-
ability when abort rates are high.

• Red-black Tree (RBT). This is theRBT implementation used
in [2]. Each node in the tree contains a single key and trans-
actions perform a 1:1:1 mix of insert, delete and lookup op-
erations. The randomly generated keys range between 0 and
16383, which limits the depth of the tree to 14 when the tree
is fully balanced. Keys range between 0 and 1023. The list is
randomly initialized to contain 16384 nodes and each proces-
sor performs 2048 operations, consisting of 1:1:1 mix of insert,
delete and lookup operations. The tree structure limits thedata
sharing among transactions in this benchmark. Therefore, this
benchmark is useful to evaluate serializability under low-abort
rates.

4.3 Evaluated Systems

We evaluate three systems.

• LL. In order to evaluate a standard transactional memory system
which is based on the 2PL consistency model, we use the
LL hardware transactional memory system discussed in [4].
Analyzing hardware resource constraints is outside the scope of
this paper, and thus we assume an infinite write buffer in order
to eliminate transactional buffer overflows.

• Hybrid Implementation of Serializability (HybSON). This is
the hybrid implementation of serializability described inSec-
tion 3.3. The underlying TM support is provided by the same
LL system mentioned above.

• Ideal Hardware Implementation of Serializability (IHwSON).
In order to evaluate the maximum performance gain that can be
achieved using our SON-based technique, we implemented a
hardware system that provides ideal support for serializability.
This implementation is ideal in the sense that it does not in-
cur any additional overheads due to the SON-based technique.
That is, accessing SON-tables, updating SON lower and upper
bounds, serializability checks are implemented as no-overhead
operations on top of the standardLL hardware support de-
scribed above. There are two reasons why we pursue this ideal
implementation. The first is that at this stage our goal is to de-
termine the limits on performance gains in hardware-based TM
systems. The second reason is that we expect the overheads to
be minimal in the full implementation because the required ex-
tensions are simple.

The main advantage of our SON-based technique overLL is
lower abort rates due to the more relaxed serializability consis-
tency model. Hence, by comparing the performance of this ideal
hardware implementation with the performance of the standard
hardware support, we can evaluate the upper bound on the per-
formance gain we can obtain by using our technique.

4.4 Experimental Results

We simulated an 8 processor system using theLL simulator de-
scribed above, and compared the evaluated systems in terms of the
number of conflicts, total execution cycles and cycles wasted due
to aborts.

4.4.1 Conflicts

Figure 7 shows the breakdown of conflicts that occur during the
execution of benchmarks.LL does not support serializability, and
thus all the conflicts are non-serializable and cause aborts. With
HybSON andIHwSON, serializable conflicts do not cause conflicts;
transactions continue after validation. WithHybSON, transactions
perform serializability checks and update SON tables. Thispro-
longs the time it takes transactions to commit. Because transac-
tions acquire tokens to serialize commits, they stall untilthe com-
mit token is available, during which accesses of active transactions
may conflict with the accesses of this stalled transaction. If such a
conflict occurs, the stalled transaction immediately aborts without
trapping to software for serializability validation. These conflicts
are labeled as the “caused by commit stall” bar in the figure.

For List, the number of non-serializable conflicts is signifi-
cantly lower inHybSON and inIHwSON compared toLL. More
specifically, we see that90.7% (3152 out of 3473) of conflicts in
IHwSON are serializable and do not require aborts. The figure also
shows that the total number of conflicts remains almost the same for
LL andIHwSON systems. This matches our expectations because
the consistency model implemented does not have any impact on
the accesses of transactions and how the accesses conflict. We no-
tice thatHybSON incurs more conflicts in total. This is due to the
conflicts caused by commit stalls as described above. If we exclude
these conflicts, the total number of serializable and non-serializable
conflicts are the same inHybSON andIHwSON. This again shows
that implementing a different consistency model does not affect the
access patterns of applications and hence the number of conflicts.

For RBT, bothLL andIHwSON incur few conflicts due to the
tree structure of the application. The number of non-serializable
conflicts is almost the same inHybSON andIHwSON. However,
HybSON incurs significantly more non-serializable conflicts. This

7



(a) Linked list. (b) Red-black tree.

Figure 7. Breakdown of conflicts.

Table 1. Execution Cycles for Linked list.

LL
HybSON
IHwSON

Wasted Cycles Total Cycles
3, 576, 285 13, 840, 741

4, 235, 209 64, 843, 198

404, 512 11, 028, 933

Table 2. Execution Cycles for Red-black tree.

LL
HybSON
IHwSON

Wasted Cycles Total Cycles
38, 582 9, 376, 218

97, 200 18, 934, 679

67 9, 675, 622

is due to the fact that, as it will be discussed below, transactions
take longer to execute inHybSON. Thus, while transactions are too
short to conflict inLL or in IHwSON, they are more susceptible
to conflicts inHybSON due to longer execution. We also see that
HybSON suffers from a number of conflicts caused by commit
stalls.

4.4.2 Cycles

Table 1 and Table 2 show the total execution cycles it takes to
run each benchmark and the execution cycles for each processor
wasted due to aborted transactions. ForList, we see thatIHwSON
take the fewest cycles to execute. It is20.3% faster compared to
LL. The difference in the number of execution cycles between
LL and IHwSON (2,811,808) is almost equal to the difference
in the number of wasted cycles due to the aborts (3,171,765).
Thus, we can conclude thatIHwSON is faster thanLL mostly
because the number of wasted cycles due to aborts is lower. Further,
for HybSON, the execution is 4.6 times longer compared toLL.
This is due to the overheads of software layer that perform extra
bookkeeping and checks for serializability. These overheads also
increase wasted cycles as shown in the figure.

ForRBT, againIHwSON takes the fewest cycles to execute, and
HybSON takes the most due to the software overheads. Because
the abort rates are very low and transactions are short, the impact
of wasted cycles on performance is very small.

Figure 8 shows the breakdown of total execution cycles. We no-
tice similar patterns for both benchmarks. First, forHybSON, we
see that 26% of execution time is spent in software traps for se-
rializability checks on average. Further, 10% of executiontime is
spent for software validation, another 10% is spent for commit op-
erations, and 25% of execution time is spent on stalling for commit
token. These represent the overheads of having a software layer for
implementing serializability. Second,IHwSON transactions spend
less time on transactional operations on average, even though the
time spent for non-transactional operations is the same inLL and
IHwSON. This is due to the impact of fewer aborts and hence, fewer
wasted cycles. Finally, forLL, the execution time mostly consists of
time spent for transactional actions and non-transactional instruc-
tions. The impact of commit time and aborting transactions is in-
significant.

We have been limited by the time to run the simulations. This
in turn, limited the length of transactions in our benchmarkappli-
cations in comparison to what we used in the past for our software-
based implementation ofCS . We expect that with longer running
transactions that the benefit of the full hardware implementation
will only improve.

5. Related Work
In our previous work [2], we described how conflict-serializability
can be implemented using our SON-based technique in a soft-
ware TM system. We demonstrated that such a relaxed consistency
model can improve performance by lowering the abort rates, es-
pecially for applications with long running transactions and high
levels of data sharing. Conflict-serializability is a well-known con-
cept in the database domain [18]. Thus, our contribution in this
regard was to successfully employ and implement this model in the
domain of TM systems.

There has been several other approaches to relaxing consis-
tency models in TM systems. Calstrom et al. [19] assert that long-
running transactions are important for the ease of parallelprogram-
ming and recognize that the use of 2PL limits concurrency. They
propose transactional collection classes to reduce the number of
conflicts and demonstrate its use for some example data-structures.
However, their approach requires knowledge of the semantics of
data structures and the dependencies that exist.

Riegel et al. [20, 21] investigate the use of snapshot isolation,
which allows transactions to access old versions of shared data
when there exist conflicts over the new versions. Snapshot isola-

8



(a) Linked list. (b) Red-black tree.

Figure 8. Breakdown of transaction execution.

tion does not provide serializability nor linearizabilitywhen old
versions are used. It requires that programmer should carefully an-
alyze the accesses and transform some read accesses to writeac-
cesses for correctness. If linearizability is required, snapshot isola-
tion again resorts to 2PL to ensure correctness.

Several software/hardware hybrid implementations of TM sys-
tems have been proposed in the literature. Most noticeably,Damron
et al. [22] proposed the Hybrid Transactional Memory systemthat
switches between hardware and software transactions depending on
the availability of hardware resources. Further, Lev et al.proposed
the Split Hardware Transactions that implement a software layer
on top of a standard hardware support for TM. The functionality
of the software layer was to provide atomicity for parent transac-
tions that are split into multiple child hardware transactions. Both
of these hybrid TM implementations are based on the 2PL consis-
tency model, whereas in our work we use the software layer to relax
the consistency model used by the hardware implementation.

6. Conclusions
In this paper, we discussed how conflict-serializability consistency
model can be supported in a base TM hardware system with lazy
conflict detection and lazy version management. We discussed the
type of additional features that are necessary to implementconflict-
serializability in any hardware-based system. We further described
both a hybrid system where serializability is implemented as a
software layer on top of a base hardware system, as well as a system
that extends the base system to support conflict-serializability fully
in hardware.

Using a simulator and two representative benchmarks, we eval-
uated both the hybrid system and an ideal version of the full hard-
ware system that incurs no overheads due to serializability. This
ideal system gives us an upper bound on the performance gainsthat
can be achieved using serializability before we implement the full
hardware system. Our evaluation shows lower abort rates in both
cases. However, the hybrid system is 2-5 times slower compared to
the base hardware due to the overheads of bookkeeping and consis-
tency checks in software. The ideal hardware system, on the other
hand, is faster than the base system because the cost of aborts is
lower. This difference in performance can be significant (23.2%

for linked list) when the cost of aborts is high in the base hardware
system, such as in applications with long running transactions and
high degree of conflicts.

Based on our results, we conclude that the hybrid solution is
not viable for typical benchmarks, and should only be considered
for applications that suffer from excessive aborts yet withsmall
amount of bookkeeping. The ideal hardware system, on the other
hand, validates our expectations that reducing the abort rates posi-
tively affect overall performance. We believe that an efficient hard-
ware implementation of serializability can take advantageof the SS
consistency model to improve performance.

References
[1] M. Herlihy and J. E. B. Moss, “Transactional memory: architectural

support for lock-free data structures,” inProc. of ISCA, pp. 289–300,
1993.

[2] U. Aydonat and T. S. Abdelrahman, “Serializability of transactions
in software transactional memory,” inTRANSACT ’08: Workshop on
Transactional Computing, 2008.

[3] M. Moir, K. Moore, and D. Nussbaum, “The adaptive transactional
memory test platform: a tool for experimenting with transactional
code for rock (poster),” inSPAA ’08: Proceedings of the twentieth
annual symposium on Parallelism in algorithms and architectures,
pp. 362–362, 2008.

[4] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift,
and D. A. Wood, “Performance pathologies in hardware transactional
memory,”SIGARCH Comput. Archit. News, vol. 35, no. 2, pp. 81–91,
2007.

[5] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun, “Transactional memory coherence and consistency,” inProc. of
ISCA, p. 102, 2004.

[6] D. Dice, O. Shalev, and N. Shavit, “Transactional locking ii,” in In
Proc. of the 20th Intl. Symp. on Distributed Computing, 2006.

[7] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood, “Logtm-se: Decoupling hardware
transactional memory from caches,” inHPCA ’07: Proceedings of
the 2007 IEEE 13th International Symposium on High Performance
Computer Architecture, pp. 261–272, 2007.

[8] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval, “Bulk disambiguation
of speculative threads in multiprocessors,” inISCA ’06: Proceedings
of the 33rd annual international symposium on Computer Architec-
ture, pp. 227–238, 2006.

[9] A. McDonald, J. Chung, B. D. Carlstrom, C. C. Minh, H. Chafi,
C. Kozyrakis, and K. Olukotun, “Architectural semantics for practical
transactional memory,” inISCA ’06: Proceedings of the 33rd annual
international symposium on Computer Architecture, pp. 53–65, 2006.

[10] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and
S. Lie, “Unbounded transactional memory,” inHPCA ’05: Proceed-

9



ings of the 11th International Symposium on High-Performance
Computer Architecture, pp. 316–327, 2005.

[11] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood,
“Logtm: Log-based transactional memory,” inProceesings of the 12th
Annual International Symposium on High Performance Computer
Architecture (HPCA-12), 2006.

[12] T. Harris and K. Fraser, “Language support for lightweight transac-
tions,” in Proc. of OOPSLA, pp. 388–402, 2003.

[13] M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scherer,
“Software transactional memory for dynamic-sized data structures,”
in Proc. of PODC, pp. 92–101, 2003.

[14] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg, “Mcrt-stm: a high performance software transactional
memory system for a multi-core runtime,” inProc. of PPoPP,
pp. 187–197, 2006.

[15] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat,
W. N. Scherer III, and M. L. Scott, “Lowering the overhead of
software transactional memory,” Tech. Rep. TR 893, Computer
Science Department, University of Rochester, 2006.

[16] M. P.S., C. M., E. J., F. D., H. G., H. J., L. F. M. A., and W. B.,
“Simics: A full system simulation platform,” Feb 2002.

[17] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood,
“Multifacet’s general execution-driven multiprocessor simulator
(gems) toolset,”SIGARCH Comput. Archit. News, vol. 33, no. 4,
pp. 92–99, 2005.

[18] J. Gray and A. Reuter,Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[19] B. D. Carlstrom, A. McDonald, M. Carbin, C. Kozyrakis, and
K. Olukotun, “Transactional collection classes,” inIn Prof. of PPoPP,
pp. 56–67, 2007.

[20] T. Riegel, C. Fetzer, and P. Felber, “Snapshot isolation for soft-
ware transactional memory,” inTRANSACT, http://wwwse.inf.tu-
dresden.de/papers/preprint-riegel2006sistm.pdf, 2006.

[21] H. Attiya, R. Guerraoui, and E. Ruppert, “Partial snapshot objects,”
in SPAA ’08: Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures, pp. 336–343, 2008.

[22] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum, “Hybrid transactional memory,” inASPLOS-XII:
Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems, pp. 336–
346, 2006.

10


